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Complexity Theory
Classify problems according to the 
computational resources required 
– running time
– storage space
– parallelism
– randomness
– rounds of interaction, communication, others…

Attempt to answer: what is computationally 
feasible with limited resources?
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Complexity Theory
• Contrast with decidability: What is 

computable?
– answer: some things are not

• We care about resources!
– leads to many more subtle questions
– fundamental open problems
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The central questions
• Is finding a solution as easy as recognizing one?

P = NP?  
• Is every efficient sequential algorithm parallelizable?

P = NC?
• Can every efficient algorithm be converted into one that 

uses a tiny amount of memory? 
P = L?

• Are there small Boolean circuits for all problems that 
require exponential running time? 

EXP ⊆ P/poly?
• Can every efficient randomized algorithm be converted 

into a deterministic algorithm one?
P = BPP?
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Central Questions
We think we know the answers to all of
these questions …

… but no one has been able to prove that 
even a small part of this “world-view” is 
correct.

If we’re wrong on any one of these then 
computer science will change dramatically

CS151 Lecture 1

5

6

Introduction
• You already know about two complexity classes 

– P = the set of problems decidable in polynomial time
– NP = the set of problems with witnesses that can be 

checked in polynomial time
… and notion of NP-completeness

• Useful tool
• Deep mathematical problem: P = NP?

Course should be both useful 
and mathematically interesting
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A question
• Given: polynomial f(x1, x2, …, xn) as 

arithmetic formula (fan-out 1):

• Question: is f identically zero?
(variables take values in finite field of size > degree)

-

*

x1 x2

*

+ -

x3 … xn

*

• multiplication (fan-in 2)

• addition (fan-in 2)
• negation (fan-in 1)
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A question
• Given: multivariate polynomial 

f(x1, x2, …, xn)
as an arithmetic formula. 

• Question: is f identically zero?

• Challenge: devise a deterministic poly-
time algorithm for this problem.
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A randomized algorithm
• Given: multivariate degree r poly. f(x1, x2, …, xd)

note: r = deg(f) ≤ size of formula 
• Algorithm:

– pick small number of random points
– if f is zero on all of these points, answer “yes”
– otherwise answer “no”

(low-degree non-zero polynomial evaluates to zero on only 
a small fraction of its domain)

• No efficient deterministic algorithm known
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Derandomization
• Here is a deterministic algorithm that 

works under the assumption that there 
exist hard problems, say SAT.

• solve SAT on all instances of length log n

• encode using error-correcting code
(variant of a Reed-Muller code)

1 1 0 0 1 1 1 0 0 1

1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1
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Derandomization

• run randomized alg. using these strings in 
place of random evaluation points
– if f is zero on all of these points, answer “yes”
– otherwise answer “no”

• This works. (proof in this course)

1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 1
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Derandomization

This technique works on any randomized 
algorithm.

Gives generic “derandomization” of 
randomized procedures.
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A surprising fact
• Is finding a solution as easy as recognizing one?

P = NP?
• Is every sequential algorithm parallelizable?

P = NC?
• Can every efficient algorithm be converted into one that 

uses a tiny amount of memory? 
P = L?

• Are there small Boolean circuits for all problems that 
require exponential running time? 

EXP ⊆P/poly?
• Can every randomized algorithm be converted into a 

deterministic algorithm one?
P = BPP?

probably FALSE

probably FALSE

probably FALSE

probably FALSE

probably TRUE
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Outline
Should be mostly review…

1. Problems and Languages

2. Complexity Classes

3. Turing Machines

4. Reductions

5. Completeness
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Problems and Languages
• Need formal notion of “computational 

problem”. Examples:
– Given graph G, vertices s, t, find the shortest 

path from s to t
– Given matrices A and B, compute AB
– Given an integer, find its prime factors
– Given a Boolean formula, find a satisfying 

assignment
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Problems and Languages
• One possibility: function from strings to 

strings

f:∑* → ∑*

• function problem:
given x, compute f(x)

• decision problem: f:∑* → {yes, no}
given x, accept or reject
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Problems and Languages
• simplification doesn’t give up much:

– Given an integer n, find its prime factors
– Given an integer n and an integer k, is there a factor 

of n that is < k?
– Given a Boolean formula, find a satisfying assignment
– Given a Boolean formula, is it satisfiable?

• can solve function problem efficiently using 
related decision problem (how?)

• We will work mostly with decision problems 
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Problems and Languages
• decision problems: f:∑* → {yes, no}
• equivalent notion: language L ⊆ ∑*

L = set of “yes” instances
• Examples:

– set of strings encoding satisfiable formulas
– set of strings that encode pairs (n,k) for which 

n has factor < k
• decision problem associated with L:

– Given x, is x in L?
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Problems and Languages
An aside: two encoding issues
1. implicitly assume we’ve agreed on a way 

to encode inputs (and outputs) as strings
– sometimes relevant in fine-grained analysis 

(e.g. adj. matrix vs. adj. list for graphs)
– almost never an issue in this class
– avoid silly encodings: e.g. unary
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Problems and Languages
2. some strings not valid encodings of any 

input -- treat as “no”

∑*
“yes” “no”L

invalid

∑*
“yes” “no”

officially: 
co-L

invalid
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Problems and Languages
2. some strings not valid encodings of any 

input -- treat as “no”

∑*
“yes” “no”L

invalid

∑*
“yes” “no”

What we usually 
mean by co-L

invalid
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Complexity Classes
• complexity class = class of languages
• set-theoretic definition – no reference to 

computation (!)
• example:

– TALLY = languages in which every yes 
instance has form 0n

– e.g. L = { 0n : n prime }
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Complexity Classes
• complexity classes you know:

– P = the set of languages decidable in 
polynomial time

– NP = the set of languages L where
L = { x : ∃ y, |y| ≤ |x|k, (x, y) ∈ R }

and R is a language in P

• easy to define complexity classes…
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Complexity Classes
• …harder to define meaningful complexity 

classes:
– capture genuine computational phenomenon (e.g.

parallelism)
– contain natural and relevant problems
– ideally characterized by natural problems 

(completeness – more soon)
– robust under variations in model of computation 
– possibly closed under operations such as AND, OR,

COMPLEMENT…
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Complexity Classes
• need a model of computation to define 

classes that capture important aspects of 
computation

• Our model of computation: Turing Machine

. . . 

finite 
control

a b a b

infinite 
tape

read/write 
head
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Turing Machines
• Q finite set of states
• ∑ alphabet including blank: “_”
• qstart, qaccept, qreject in Q
• δ : Q x ∑ → Q x ∑ x {L, R, -} transition fn.
• input written on tape, head on 1st square, 

state qstart
• sequence of steps specified by δ
• if reach qaccept or qreject then halt
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Turing Machines
• three notions of computation with Turing 

machines. In all, input x written on tape…
– function computation: output f(x) is left on 

the tape when TM halts
– language decision: TM halts in state qaccept if 

x ∈ L; TM halts in state qreject if x ∉ L.
– language recognition: TM halts in state 

qaccept if x ∈ L; may loop forever otherwise.
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q σ δ(q,σ)
start 0 (start, 0, R)

start 1 (start, 1, R)

start _ (t, _, L)

start # (start, #, R)

# 0 1
# 0 1

# 0 1
# 0 1
# 0 1

# 0 0

start
start
start
start

t
t

# 1 0 accept

Example:

q σ δ(q,σ)
t 0 (accept, 1, -)

t 1 (t, 0, L)

t # (accept, #, R)
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Turing Machines
• multi-tape Turing Machine:

. . . finite 
control

a b a b

a a

b b c d

. . . 

. . . 

k tapes

δ:Q x ∑k →Q x ∑k x {L,R,-}k

(input tape)

Usually:
• read-only “input tape”
• write-only “output tape”
• k-2 read/write “work 
tapes”
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Multitape TMs
simulation of k-tape TM by single-tape TM:

. . . a b a b

a a

b b c d

. . . 

. . . 

(input tape)

# a b a b # a a # b b c d # . . . 

• add new symbol 
x for each old x

• marks location of 
“virtual heads”
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Multitape TMs
. . . a b a b

a a

b b c d

. . . 

. . . 

# a b a b # a a # b b c d # . . . 

Repeat:   O(t(n)) times
• scan tape, remembering the symbols 
under each virtual head in the state 
O(k t(n)) = O(t(n))
• make changes to reflect 1 step of M; 
if hit #, shift to right to make room.   
O(k t(n)) = O(t(n))

when M halts, erase all but output string  
O(k t(n)) = O(t(n))
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Extended Church-Turing Thesis
• the belief that TMs formalize our intuitive 

notion of an efficient algorithm is:

• quantum computers challenge this belief

The “extended” Church-Turing Thesis

everything we can compute in time t(n)
on a physical computer can be 

computed on a Turing Machine in time 
tO(1)(n) (polynomial slowdown)
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Extended Church-Turing Thesis
• consequence of extended Church-Turing 

Thesis: all reasonable physically realizable 
models of computation can be efficiently
simulated by a TM

• e.g. multi-tape vs. single tape TM
• e.g. RAM model
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Turing Machines
• Amazing fact: there exist (natural) 

undecidable problems

HALT = { (M, x) : M halts on input x }

• Theorem: HALT is undecidable.
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Turing Machines
• Proof:

– Suppose TM H decides HALT
– Define new TM H’: on input <M>

• if H accepts (M, <M>) then loop
• if H rejects (M, <M>) then halt

– Consider H’ on input <H’>:
• if it halts, then H rejects (H’, <H’>), which implies 

it cannot halt
• if it loops, then H accepts (H’, <H’>) which implies 

it must halt
– contradiction.
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Diagonalization

Turing 
Machines 

inputs 
Y

n
Y

n
n

Y
n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’
that cannot be in 
the table.
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