CS 151 Complexity Theory

Spring 2015

Sample LATEX Template

March 29, 2015 (Your Name)

- 1. Please remember that homework solutions should be:
 - Clear
 - Concise
 - Precise
 - Legible (if handwritten).
- 2. An example¹:
- (Yes) "According to the 'fundamental theorem of arithmetic' (proved in ex. 1.2.4-21), each positive integer u can be expressed in the form

$$u = 2^{u_2} 3^{u_3} 5^{u_5} 7^{u_7} 11^{u_{11}} \dots = \prod_{p \text{ prime}} p^{u_p}$$

where the exponents u_2, u_3, \ldots are uniquely determined nonnegative integers, and where all but a finite number of the exponents are zero."

(No) "If $L^+(P, N_0)$ is the set of functions $f: P \to N_0$ with the property that

$$\exists_{n_0 \in N_0} \ \forall_{p \in P} \ p \ge n_0 \Rightarrow f(p) = 0$$

then there exists a bijection $N_1 \to \mathbf{L}^+(P, N_0)$ such that if $n \to f$ then

$$n = \prod_{p \in P} p^{f(p)}.$$

Here P is the prime numbers and $N_1 = N_0 \sim \{0\}$."

- 3. Show that P = NP.
 - (a) If $\mathbf{N} = 1$ then $\mathbf{P} = \mathbf{P}$.
 - (b) If P = 0 then 0 = 0.
 - (c) Collect \$1 million.

¹Taken from *Mathematical Writing* by Knuth, Larrabee, and Roberts.

4. This page intentionally left blank.