1. Please remember that homework solutions should be:

- Clear
- Concise
- Precise
- Legible (if handwritten).

2. An example ${ }^{1}$:
(Yes) "According to the 'fundamental theorem of arithmetic' (proved in ex. 1.2.4-21), each positive integer u can be expressed in the form

$$
u=2^{u_{2}} 3^{u_{3}} 5^{u_{5}} 7^{u_{7}} 11^{u_{11}} \ldots=\prod_{p \text { prime }} p^{u_{p}}
$$

where the exponents u_{2}, u_{3}, \ldots are uniquely determined nonnegative integers, and where all but a finite number of the exponents are zero."
(No)"If $\mathbf{L}^{+}\left(P, N_{0}\right)$ is the set of functions $f: P \rightarrow N_{0}$ with the property that

$$
\underset{n_{0} \in N_{0}}{\exists} \underset{p \in P}{\forall} p \geq n_{0} \Rightarrow f(p)=0
$$

then there exists a bijection $N_{1} \rightarrow \mathbf{L}^{+}\left(P, N_{0}\right)$ such that if $n \rightarrow f$ then

$$
n=\prod_{p \in P} p^{f(p)}
$$

Here P is the prime numbers and $N_{1}=N_{0} \sim\{0\} . "$
3. Show that $\mathbf{P}=\mathbf{N P}$.
(a) If $\mathbf{N}=1$ then $\mathbf{P}=\mathbf{P}$.
(b) If $\mathbf{P}=0$ then $0=0$.
(c) Collect $\$ 1$ million.

[^0]4. This page intentionally left blank.

[^0]: ${ }^{1}$ Taken from Mathematical Writing by Knuth, Larrabee, and Roberts.

