
CS 151 Complexity Theory Spring 2023

Final

Out: June 1 Due: 1pm, Thursday June 8

This is a final exam. Collaboration is not allowed. You may consult the course notes and the text
(Papadimitriou), but not any other source or person. The full honor code guidelines can be found
in the course syllabus.

Please attempt all problems. Please turn in your solutions via Gradescope, by 1pm on
the due date.

1. Define Li to be the class of languages decidable by a deterministic Turing Machine using at
most O(logi n) space, and NLi to be the class of languages decidable by a non-deterministic
Turing Machine using at most O(logi n) space. The classes L1 and NL1 should be familiar –
they are just deterministic logspace and nondeterministic logspace, respectively.

(a) Show that for all i, NCi ⊆ Li.

(b) Show that for all i, NLi has O(log2i n) depth, fan-in 2, Boolean circuits. Your circuits
do not need to be uniform.

(c) It is tempting to try to show that for all i, NLi ⊆ NC2i (since this holds for i = 1).
Show that this would solve a major open problem. Try to give the strongest implication
you can, i.e., if the containment implies A, and A implies B, you should pick A.

2. Consider the following generic setup: out of all 2n strings in {0, 1}n, some subset A ⊆ {0, 1}n
of them are “distinguished.” You don’t know A directly, but you do have an efficient way to
recognize a distinguished string when you see one. That is, there is a small Boolean circuit
C with n inputs for which C(x) = 1 if and only if x ∈ A. A natural thing to want to do
is to estimate the number of distinguished strings. Determining |A| exactly is #P-complete

but you showed on Problem Set 6 that |A| can be determined approximately in ZPPNP.
Here you will show that the related problem of “proving that |A| is large” is in AM. We can
formalize this as the task of deciding the following promise problem largeset:

• Input: circuit C with n inputs, integer k

• YES instances: those pairs (C, k) for which |{x : C(x) = 1}| ≥ 3 · 2k

• NO instances: those pairs (C, k) for which |{x : C(x) = 1}| ≤ 1
3 · 2

k

You will show that largeset has an AM protocol. The precise meaning of this statement
is as follows: given mutual input (C, k), Arthur and Merlin engage in a constant round
interactive protocol. If (C, k) is a YES instance, then Merlin has a strategy that causes
Arthur to accept with probability 1; if (C, k) is a NO instance, then Arthur rejects with
probability at least 1/2 no matter what Merlin does. The behavior of the protocol is not
specified when (C, k) is neither a YES instance nor an NO instance.
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(a) For a k × n matrix M with 0/1 entries and a vector b ∈ {0, 1}k, define the function
hM,b(x) : {0, 1}n → {0, 1}k by hM,b(x) = Mx + b (where all arithmetic is performed
modulo 2). Prove that for all x ∈ {0, 1}n and y ∈ {0, 1}k,

Pr
M,b

[hM,b(x) = y] = 2−k

and that for all x1, x2 ∈ {0, 1}n, x1 6= x2, and y1, y2 ∈ {0, 1}k,

Pr[hM,b(x1) = y1 ∧ hM,b(x2) = y2] = 2−2k.

This shows that the family of functions H = {hM,b} is a pairwise independent family of
hash functions from n bits to k bits. The following is a consequence (that you can verify
using Chebyshev’s Inequality, but you need not prove here): for each fixed y ∈ {0, 1}k,

Pr
M,b

[∃x ∈ A hM,b(x) = y] ≥ 1− 2k

|A|
.

(b) Using part (a), give an AM protocol for largeset.

3. Prove that if PSPACE ⊆ P/poly, then PSPACE = MA. You may use the following fact:
in the proof that IP = PSPACE, the function describing what message the (honest) prover
should send in each round (as a function of the mutual input and the messages seen so far)
is computable in polynomial space.

4. Here is a new class involving alternating quantifiers: Sp
2 (the “S” stands for “symmetric

alternation”). A language L is in Sp
2 if and only if there is a language R ∈ P for which

x ∈ L ⇒ ∃y ∀z (x, y, z) ∈ R

x 6∈ L ⇒ ∃z ∀y (x, y, z) 6∈ R

where as usual |y| = poly(|x|) and |z| = poly(|x|). To make sense of this definition it is useful
to think of R as defining for each x a 0/1 matrix Mx whose rows are indexed by y and whose
columns are indexed by z. Entry (y, z) of matrix Mx is 1 if (x, y, z) ∈ R and 0 otherwise.
Now, the definition says that x ∈ L if there is an all-ones row in Mx and x 6∈ L if there is an
all-zeros column in Mx (and it is clear that these configurations are mutually exclusive).

(a) Argue that Sp
2 ⊆ (Σp

2 ∩Πp
2).

(b) The language lex-first-acceptance consists of those pairs (C1, C2) for which C1, C2

are circuits, and the lexicographically first string x for which C1(x) = 1 is also accepted
by C2. (If there is no lexicographically first string, i.e., C1 is unsatisfiable, then (C1, C2)
is not in the language). A bitstring x lexicographically precedes a bitstring y if the first
position i in which they differ has xi = 0 and yi = 1. Prove that lex-first-acceptance

is PNP-complete. Note: this problem is intended to be challenging.

Hint: as a warm-up, it may be useful to give the reduction from a language L ∈ PNP

that is decided by a oracle Turing Machine that makes only a single oracle query.

(c) Use the previous part to show that PNP ⊆ Sp
2 .
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(d) Prove that MA ⊆ Sp
2 .

(e) Prove a stronger form of the Sipser-Lautemann Theorem (Lecture 13): BPP ⊆ Sp
2 .

(f) Prove a stronger form of the Karp-Lipton Theorem (Lecture 13): if SAT has polynomial-
size circuits then PH = Sp

2 .


