
CS 151 Complexity Theory Spring 2023

Final Solutions

Posted: June 8 Chris Umans

1. (a) The procedure that traverses a fan-in 2 depth O(logi n) circuit and outputs a formula
runs in Li – this can be done by a recursive depth-first traversal, which only requires 1
bit of information (“left” or ”right”) at each level of recursion. The procedure for FVAL

(Lecture 2) runs in log-space, so on a formula of size 2O(logi n), it runs in O(logi n) space.
Using space-efficient composition of the logspace procedure that generates the circuit
together with these two procedures we obtain a procedure to evaluate an NCi circuit
on a given input in only O(logi n) space, as required.

(b) The configuration graph for an NLi machine on input x of length n has at most 2O(logi n)

nodes. The input x is accepted if and only if there is a path from the start node s to
the accept node t in this graph. We can construct the incidence matrix A of this graph
(with ones on the diagonal), and we observe that A∗ = A2m , for m = O(logi n) has
a one in position s, t if and only if there is a path of length at most 2m from s to t
(here we are using Boolean matrix multiplication). We can square matrix A with a
O(log |A|) = O(logi n) depth circuit. We repeat this squaring m times, to compute A∗.
The repeated squaring entails m sequential copies of the squaring circuit, which has
depth O(logi n). The total depth is O(log2i n).

(c) Suppose we show NLi ⊆ NC2i for some i > 1. Then we have

Li ⊆ NLi ⊆ NC2i ⊆ P.

However, we know by the Space Hierarchy Theorem that L is strictly contained in Li

for i > 1. Thus we would have proved L 6= P. In fact, we would have proved something
stronger: that NC1 6= NC2, since an equality would collapse all of the hierarchy to NC1,
including NC2i (and then we would have NC1 = L = Li = NLi = NC2i, contradicting
the Space Hierarchy Theorem).

2. (a) Fix an x ∈ {0, 1}n and a y ∈ {0, 1}k. Imagine that we have already chosen M . In order
to have hM,b(x) = y, we must have Mx + b = y or equivalently y −Mx = b. This
happens with probability exactly 2−k since b is chosen uniformly from {0, 1}k.

For the second part, we know that x1 6= x2. Thus there must be a position i in which
they differ. WLOG, assume (x1)i = 1 and (x2)i = 0. Imagine that we have already
chosen all of M except for the i-th column, and denote by M ′ the matrix M with 0s in
the i-th column. Let us denote by a ∈ {0, 1}k our choice of the i-th column of M . Note
that hM,b(x1) = M ′x1 + a + b and hM,b(x2) = M ′x2 + b. Thus we are interested in the
probability that a+ b = y1−M ′x1 and b = y2−M ′x2. Since each of a and b are chosen
uniformly and independently from {0, 1}k, this happens with probability 2−2k. More
precisely, there is a 2−k chance of choosing b equal to the fixed vector y2 −M ′x2, and
then given the choice of b, there is a 2−k chance of choosing a equal to y1 −M ′x1 − b.

0-1

0-2

(b) Here is a 2-round AM protocol for largeset. The common input is (C, k).

• Arthur picks a random y and a random k × n matrix M and b ∈ {0, 1}k as above
and sends them to Merlin.

• Merlin replies with an x ∈ {0, 1}n.

• Arthur accepts iff C(x) = 1 and hM,b(x) = y.

We have to show completeness and soundness for this protocol. For completeness, set
A = {x : C(x) = 1}, and observe that if |A| ≥ 3(2k) then the inequality from the
problem statement gives us:

Pr
M,b,y

[∃x ∈ A hM,b(x) = y] ≥ 1− 2k

|A|
≥ 2

3
.

Thus given a YES instance, with probability at least 2/3, Merlin has a reply that will
cause Arthur to accept.

For soundness, again set A = {x : C(x) = 1}, and observe that if |A| ≤ (2k)/3 then from
part (a), we have that for each fixed x ∈ A,

Pr
M,b,y

[hM,b(x) = y] = 2−k.

Taking a union bound over all x ∈ A, we get

Pr
M,b,y

[∃x ∈ A hM,b(x) = y] ≤ 2−k|A| ≤ 1

3
.

Thus given a NO instance, the probability that Merlin has a reply that will cause Arthur
to accept is at most 1/3.

Finally, apply the transformation from Problem Set 6, Problem 3, to this protocol to
achieve perfect completeness.

3. Let L be a language in PSPACE, and let x be an input of length n. Using the given
fact, together with the assumption that PSPACE has polynomial-size circuits, there is a
polynomial size circuit C that computes the (honest) prover’s messages as a function of x
and the messages seen so far, in the IP protocol for L.

We need to describe a MA protocol for L. We have Merlin send the circuit C in the first round.
Then Arthur simulates the IP protocol for L with input x, evaluating C to determine the
prover’s messages at each step. This entails flipping polynomially many coins, and evaluating
the circuit C polynomially many times. In the end Arthur accepts if the Verifier he is
simulating would have accepted.

Now, if x is in L, then there exists a Merlin message that will cause Arthur to accept with
probability at least 2/3 – namely, the circuit that correctly computes the Prover messages in
the IP protocol for L. On the other hand, if x 6∈ L, then no matter what C is sent in the first
round, Arthur will reject with probability at least 2/3, because of the soundness guarantee for
the IP protocol. I.e., the evaluations of any circuit C correspond to some (possibly dishonest)
prover, and we know that when x 6∈ L, no prover can cause the Verifier to accept with more
than 1/3 probability.

This shows that PSPACE ⊆MA. We know that MA ⊆ PSPACE unconditionally, so we
conclude that under the assumption PSPACE ⊆ P/poly, we have PSPACE = MA.

0-3

4. (a) For a language L ∈ Sp
2 , we have

x ∈ L ⇒ ∃y ∀z (x, y, z) ∈ R
x 6∈ L ⇒ ∃z ∀y (x, y, z) 6∈ R⇒ ∀y ∃z (x, y, z) 6∈ R

Thus L ∈ Σp
2 . We also have:

x ∈ L ⇒ ∃y ∀z (x, y, z) ∈ R⇒ ∀z ∃y (x, y, z) ∈ R
x 6∈ L ⇒ ∃z ∀y (x, y, z) 6∈ R

and so L ∈ Πp
2 . We conclude that Sp

2 ⊆ (Σp
2 ∩Πp

2).

(b) Let L be an arbitrary language in PNP and let M be an oracle Turing Machine that
decides L in time nc for some constant c. Fix an input x. Without loss of generality we
standardize M so that its oracle is SAT, and all of its oracle queries are 3-CNF formulas
with m variables.

We describe the behavior of two machines M1 and M2 that run in polnyomial time;
these are then converted into the circuits C1 and C2 that the reduction produces from x.
Machine M1 simulates machine M on input x, until M makes an oracle query: φ ∈ SAT?.
At this point M1 consults its input y, and reads m + 1 bits of y. If the first bit is 0, it
checks if the remaining m bits are a satisfying assignment to φ; if they are it continues
simulating M as if M had received a “yes” answer to its query, otherwise it rejects. If
the first bit is 1, it discards the remaining m bits, and continues simulating M as if M
had received a “no” answer to its query. We continue in this fashion, reading successive
(m− 1)-bit segments of y as (our simulation of) M encounters successive oracle queries.
We stop when M1 has simulated |x|c steps of M , at which point it accepts.

Machine M2 does exactly the same thing as M1, except that it accepts at the end iff M
would have accepted at this point. Note that depending on y, this may or may not agree
with what MSAT actually does on input x. However, we claim that the lexicographically
first y that M1 accepts causes M2 to correctly simulate MSAT on input x. This is true
because at each query φ, the lexicographically first m + 1 bits that will cause M1 to
continue its simulation are either (1) 0 followed by the lexicographically first satisfying
assignment to φ if φ ∈ SAT , or (2) 1 followed by all zeros if φ 6∈ SAT . In case (1) our
simulation proceeds as if it received a “yes” answer to the query and in case (2) our
simulation proceeds as if it received a “no” answer; in both cases this correctly simulates
MSAT .

We conclude that M2 accepts the lexicographically first y accepted by M1 iff MSAT

accepts x, as required.

We also should argue that the problem is in PNP, but this is easy, because we can do
a binary search (using the NP oracle) to identify the lexicographically first y accepted
by C1, and then plug it into C2.

(c) We argue that lex-first-acceptance is in Sp
2 . Let (C1, C2) be an instance of lex-

first-acceptance. Define the function f(y, y′) to be C2(ymin) where ymin is the lex-
icographically first among y, y′ that C1 accepts; or 0 if C1(y) = C1(y

′) = 0. We claim
that

(C1, C2) ∈ lex-first-acceptance ⇒ ∃y ∀y′ f(y, y′) = 1

(C1, C2) 6∈ lex-first-acceptance ⇒ ∃y′ ∀y f(y, y′) = 0

0-4

This is easily seen by taking y to be the lexicographically first string accepted by C1 in
the first case, and y′ to be the lexicographically first string accepted by C1 in the second

case. Since lex-first-acceptance is PNP-complete, we conclude that PNP ⊆ Sp
2 .

(d) By error reduction, we may assume that for every language L in MA there is a language
R in P for which

x ∈ L ⇒ ∃yPr
z

[(x, y, z) ∈ R] = 1

x 6∈ L ⇒ ∀yPr
z

[(x, y, z) ∈ R] < 2−|y|.

We claim that

x ∈ L ⇒ ∃y ∀z (x, y, z) ∈ R
x 6∈ L ⇒ ∃z ∀y (x, y, z) 6∈ R,

which implies that L ∈ SP
2 as required. The first part is obvious from the definitions.

For the second part, observe that

∀yPr
z

[(x, y, z) ∈ R] < 2−|y|

implies (by the union bound)

Pr
z

[∃y (x, y, z) ∈ R] < 2|y|2−|y| = 1. (0.1)

This implies ∃z ∀y (x, y, z) 6∈ R as required.

(e) Given a language L ∈ BPP, we can use strong error reduction to produce a probabilistic
polynomial time TM M for which:

x ∈ L ⇒ Pr
y

[M(x, y) = 1] ≥ 1− 2|y|
1/3

2|y|

x 6∈ L ⇒ Pr
y

[M(x, y) = 0] ≥ 1− 2|y|
1/3

2|y|
.

We split y into two equal-length substrings y = u ◦ v. Our predicate R is simply
R(x, u, v) = M(x, u ◦ v).

Now, if x ∈ L, then it must be that ∃u ∀v R(x, u, v) = 1, for if not, then ∀u ∃v R(x, u, v) =

0 which implies that M(x, y) = 0 for at least 2|y|/2 � 2|y|
1/3

values of y, a contradiction.

Similarly, if x 6∈ L, then it must be that ∃v ∀u R(x, u, v) = 0, for if not, then

∀v ∃u R(x, u, v) = 1 which implies that M(x, y) = 1 for at least 2|y|/2 � 2|y|
1/3

val-
ues of y, a contradiction.

We conclude that L ∈ Sp
2 and therefore BPP ⊆ Sp

2 as required.

Another solution is to observe that BPP is contained in (2-sided error) MA and apply
the previous part!

(f) The following notation will be useful: given a circuit C with a single Boolean output, let
C̃ be the circuit derived from C that uses C as if it were a circuit for SAT to actually find

0-5

a satisfying assignment (via the self-reducibility of SAT). If at any point in the repeated
applications of C, there is an inconsistent answer, C̃ outputs some fixed string, say, the
all-zeros string. So, C̃ has as many outputs as inputs, and |C̃| ≤ poly(|C|), and if C is
a circuit correctly computing SAT, then C̃ will correctly output a satisfying assignment
if there is one.

Let L be a language in Πp
2 , so we have

x ∈ L ⇒ ∀y ∃z (x, y, z) ∈ R
x 6∈ L ⇒ ∃y ∀z (x, y, z) 6∈ R

for some language R ∈ P. Observe that the language L′ = {(x, y) : ∃z (x, y, z) ∈ R} is
in NP, and so given a pair (x, y) we can use a procedure that solves SAT and actually
returns a satisfying assignment if there is one to find z for which (x, y, z) ∈ R if such a
z exists.

Define R′ to be the language consisting of exactly the triples (x,C, y) for which using
C̃, we obtain a z for which (x, y, z) ∈ R. Notice that R′ can be evaluated in polynomial
time.

We are assuming that SAT has polynomial-size circuits. If x ∈ L, then there exists a
circuit C (the one that computes SAT) for which for all y, C̃ will successfully find a z
that causes R′ to accept. Thus x ∈ L⇒ ∃C ∀y (x,C, y) ∈ R′.
If x 6∈ L, then there is some y∗ for which ∀z (x, y∗, z) 6∈ R. Thus for all C, (x,C, y∗) 6∈ R′,
because no matter what z we find using C̃, it will not be the case that (x, y∗, z) ∈ R.
Therefore x 6∈ L⇒ ∃y ∀C (x,C, y) 6∈ R′. We conclude that L ∈ Sp

2 .

We have shown that Πp
2 ⊆ Sp

2 . Since Sp
2 is closed under complement, we also have that

Σp
2 ⊆ Sp

2 . Using part (a), we have Πp
2 = Σp

2 = Sp
2 , and so the PH collapses to Σp

2 = Sp
2

as required.

