CS 151 Complexity Theory

Spring 2023

Final Solutions

Posted: June 8

Chris Umans

- 1. (a) The procedure that traverses a fan-in 2 depth $O(\log^i n)$ circuit and outputs a formula runs in \mathbf{L}_i – this can be done by a recursive depth-first traversal, which only requires 1 bit of information ("left" or "right") at each level of recursion. The procedure for FVAL (Lecture 2) runs in log-space, so on a formula of size $2^{O(\log^i n)}$, it runs in $O(\log^i n)$ space. Using space-efficient composition of the logspace procedure that generates the circuit together with these two procedures we obtain a procedure to evaluate an \mathbf{NC}_i circuit on a given input in only $O(\log^i n)$ space, as required.
 - (b) The configuration graph for an \mathbf{NL}_i machine on input x of length n has at most $2^{O(\log^i n)}$ nodes. The input x is accepted if and only if there is a path from the start node s to the accept node t in this graph. We can construct the incidence matrix A of this graph (with ones on the diagonal), and we observe that $A^* = A^{2^m}$, for $m = O(\log^i n)$ has a one in position s, t if and only if there is a path of length at most 2^m from s to t (here we are using Boolean matrix multiplication). We can square matrix A with a $O(\log |A|) = O(\log^i n)$ depth circuit. We repeat this squaring m times, to compute A^* . The repeated squaring entails m sequential copies of the squaring circuit, which has depth $O(\log^i n)$. The total depth is $O(\log^{2^i} n)$.
 - (c) Suppose we show $\mathbf{NL}_i \subseteq \mathbf{NC}_{2i}$ for some i > 1. Then we have

 $\mathbf{L}_i \subseteq \mathbf{NL}_i \subseteq \mathbf{NC}_{2i} \subseteq \mathbf{P}.$

However, we know by the Space Hierarchy Theorem that \mathbf{L} is *strictly* contained in \mathbf{L}_i for i > 1. Thus we would have proved $\mathbf{L} \neq \mathbf{P}$. In fact, we would have proved something stronger: that $\mathbf{NC}_1 \neq \mathbf{NC}_2$, since an equality would collapse all of the hierarchy to \mathbf{NC}_1 , including \mathbf{NC}_{2i} (and then we would have $\mathbf{NC}_1 = \mathbf{L} = \mathbf{L}_i = \mathbf{NL}_i = \mathbf{NC}_{2i}$, contradicting the Space Hierarchy Theorem).

2. (a) Fix an x ∈ {0,1}ⁿ and a y ∈ {0,1}^k. Imagine that we have already chosen M. In order to have h_{M,b}(x) = y, we must have Mx + b = y or equivalently y - Mx = b. This happens with probability exactly 2^{-k} since b is chosen uniformly from {0,1}^k. For the second part, we know that x₁ ≠ x₂. Thus there must be a position i in which they differ. WLOG, assume (x₁)_i = 1 and (x₂)_i = 0. Imagine that we have already chosen all of M except for the *i*-th column, and denote by M' the matrix M with 0s in the *i*-th column. Let us denote by a ∈ {0,1}^k our choice of the *i*-th column of M. Note that h_{M,b}(x₁) = M'x₁ + a + b and h_{M,b}(x₂) = M'x₂ + b. Thus we are interested in the probability that a + b = y₁ - M'x₁ and b = y₂ - M'x₂. Since each of a and b are chosen uniformly and independently from {0,1}^k, this happens with probability 2^{-2k}. More precisely, there is a 2^{-k} chance of choosing b equal to the fixed vector y₂ - M'x₂, and then given the choice of b, there is a 2^{-k} chance of choosing a equal to y₁ - M'x₁ - b.

- (b) Here is a 2-round **AM** protocol for LARGESET. The common input is (C, k).
 - Arthur picks a random y and a random $k \times n$ matrix M and $b \in \{0,1\}^k$ as above and sends them to Merlin.
 - Merlin replies with an $x \in \{0, 1\}^n$.
 - Arthur accepts iff C(x) = 1 and $h_{M,b}(x) = y$.

We have to show completeness and soundness for this protocol. For completeness, set $A = \{x : C(x) = 1\}$, and observe that if $|A| \ge 3(2^k)$ then the inequality from the problem statement gives us:

$$\Pr_{M,b,y}[\exists x \in A \ h_{M,b}(x) = y] \ge 1 - \frac{2^k}{|A|} \ge \frac{2}{3}.$$

Thus given a YES instance, with probability at least 2/3, Merlin has a reply that will cause Arthur to accept.

For soundness, again set $A = \{x : C(x) = 1\}$, and observe that if $|A| \le (2^k)/3$ then from part (a), we have that for each fixed $x \in A$,

$$\Pr_{M,b,y}[h_{M,b}(x) = y] = 2^{-k}.$$

Taking a union bound over all $x \in A$, we get

$$\Pr_{M,b,y}[\exists x \in A \ h_{M,b}(x) = y] \le 2^{-k}|A| \le \frac{1}{3}.$$

Thus given a NO instance, the probability that Merlin has a reply that will cause Arthur to accept is at most 1/3.

Finally, apply the transformation from Problem Set 6, Problem 3, to this protocol to achieve perfect completeness.

3. Let L be a language in **PSPACE**, and let x be an input of length n. Using the given fact, together with the assumption that **PSPACE** has polynomial-size circuits, there is a polynomial size circuit C that computes the (honest) prover's messages as a function of x and the messages seen so far, in the **IP** protocol for L.

We need to describe a **MA** protocol for L. We have Merlin send the circuit C in the first round. Then Arthur simulates the **IP** protocol for L with input x, evaluating C to determine the prover's messages at each step. This entails flipping polynomially many coins, and evaluating the circuit C polynomially many times. In the end Arthur accepts if the Verifier he is simulating would have accepted.

Now, if x is in L, then there exists a Merlin message that will cause Arthur to accept with probability at least 2/3 – namely, the circuit that correctly computes the Prover messages in the **IP** protocol for L. On the other hand, if $x \notin L$, then no matter what C is sent in the first round, Arthur will reject with probability at least 2/3, because of the soundness guarantee for the **IP** protocol. I.e., the evaluations of any circuit C correspond to *some* (possibly dishonest) prover, and we know that when $x \notin L$, no prover can cause the Verifier to accept with more than 1/3 probability.

This shows that **PSPACE** \subseteq **MA**. We know that **MA** \subseteq **PSPACE** unconditionally, so we conclude that under the assumption **PSPACE** \subseteq **P**/**poly**, we have **PSPACE** = **MA**.

4. (a) For a language $L \in \mathbf{S_2^p}$, we have

$$\begin{array}{ll} x \in L & \Rightarrow & \exists y \; \forall z \; (x,y,z) \in R \\ x \notin L & \Rightarrow & \exists z \; \forall y \; (x,y,z) \notin R \Rightarrow \forall y \; \exists z \; (x,y,z) \notin R \end{array}$$

Thus $L \in \Sigma_2^p$. We also have:

$$\begin{array}{ll} x \in L & \Rightarrow & \exists y \; \forall z \; (x,y,z) \in R \Rightarrow \forall z \; \exists y \; (x,y,z) \in R \\ x \not\in L & \Rightarrow & \exists z \; \forall y \; (x,y,z) \notin R \end{array}$$

and so $L \in \Pi_2^p$. We conclude that $\mathbf{S}_2^p \subseteq (\Sigma_2^p \cap \Pi_2^p)$.

(b) Let L be an arbitrary language in $\mathbf{P}^{\mathbf{NP}}$ and let M be an oracle Turing Machine that decides L in time n^c for some constant c. Fix an input x. Without loss of generality we standardize M so that its oracle is SAT, and all of its oracle queries are 3-CNF formulas with m variables.

We describe the behavior of two machines M_1 and M_2 that run in polynomial time; these are then converted into the circuits C_1 and C_2 that the reduction produces from x. Machine M_1 simulates machine M on input x, until M makes an oracle query: $\phi \in SAT$?. At this point M_1 consults its input y, and reads m + 1 bits of y. If the first bit is 0, it checks if the remaining m bits are a satisfying assignment to ϕ ; if they are it continues simulating M as if M had received a "yes" answer to its query, otherwise it rejects. If the first bit is 1, it discards the remaining m bits, and continues simulating M as if Mhad received a "no" answer to its query. We continue in this fashion, reading successive (m-1)-bit segments of y as (our simulation of) M encounters successive oracle queries. We stop when M_1 has simulated $|x|^c$ steps of M, at which point it accepts.

Machine M_2 does exactly the same thing as M_1 , except that it accepts at the end iff M would have accepted at this point. Note that depending on y, this may or may not agree with what M^{SAT} actually does on input x. However, we claim that the *lexicographically* first y that M_1 accepts causes M_2 to correctly simulate M^{SAT} on input x. This is true because at each query ϕ , the lexicographically first m + 1 bits that will cause M_1 to continue its simulation are either (1) 0 followed by the lexicographically first satisfying assignment to ϕ if $\phi \in SAT$, or (2) 1 followed by all zeros if $\phi \notin SAT$. In case (1) our simulation proceeds as if it received a "yes" answer to the query and in case (2) our simulation proceeds as if it received a "no" answer; in both cases this correctly simulates M^{SAT} .

We conclude that M_2 accepts the lexicographically first y accepted by M_1 iff M^{SAT} accepts x, as required.

We also should argue that the problem is in $\mathbf{P}^{\mathbf{NP}}$, but this is easy, because we can do a binary search (using the NP oracle) to identify the lexicographically first y accepted by C_1 , and then plug it into C_2 .

(c) We argue that LEX-FIRST-ACCEPTANCE is in $\mathbf{S}_{2}^{\mathbf{p}}$. Let (C_{1}, C_{2}) be an instance of LEX-FIRST-ACCEPTANCE. Define the function f(y, y') to be $C_{2}(y_{min})$ where y_{min} is the lexicographically first among y, y' that C_{1} accepts; or 0 if $C_{1}(y) = C_{1}(y') = 0$. We claim that

> $(C_1, C_2) \in \text{LEX-FIRST-ACCEPTANCE} \Rightarrow \exists y \ \forall y' \ f(y, y') = 1$ $(C_1, C_2) \notin \text{LEX-FIRST-ACCEPTANCE} \Rightarrow \exists y' \ \forall y \ f(y, y') = 0$

0-4

This is easily seen by taking y to be the lexicographically first string accepted by C_1 in the first case, and y' to be the lexicographically first string accepted by C_1 in the second case. Since LEX-FIRST-ACCEPTANCE is $\mathbf{P}^{\mathbf{NP}}$ -complete, we conclude that $\mathbf{P}^{\mathbf{NP}} \subseteq \mathbf{S}_2^{\mathbf{p}}$.

(d) By error reduction, we may assume that for every language L in **MA** there is a language R in **P** for which

$$\begin{split} & x \in L \; \Rightarrow \; \exists y \Pr_z[(x, y, z) \in R] = 1 \\ & x \notin L \; \Rightarrow \; \forall y \Pr[(x, y, z) \in R] < 2^{-|y|}. \end{split}$$

We claim that

$$\begin{array}{ll} x \in L & \Rightarrow & \exists y \; \forall z \; (x,y,z) \in R \\ x \not\in L & \Rightarrow & \exists z \; \forall y \; (x,y,z) \notin R, \end{array}$$

which implies that $L \in \mathbf{S_2^P}$ as required. The first part is obvious from the definitions. For the second part, observe that

$$\forall y \Pr_{z}[(x, y, z) \in R] < 2^{-|y|}$$

implies (by the union bound)

$$\Pr_{\bar{x}}[\exists y \ (x, y, z) \in R] < 2^{|y|} 2^{-|y|} = 1.$$
(0.1)

This implies $\exists z \ \forall y \ (x, y, z) \notin R$ as required.

(e) Given a language $L \in \mathbf{BPP}$, we can use strong error reduction to produce a probabilistic polynomial time TM M for which:

$$\begin{aligned} x \in L &\Rightarrow & \Pr_{y}[M(x,y) = 1] \ge 1 - \frac{2^{|y|^{1/3}}}{2^{|y|}} \\ x \notin L &\Rightarrow & \Pr_{y}[M(x,y) = 0] \ge 1 - \frac{2^{|y|^{1/3}}}{2^{|y|}}. \end{aligned}$$

We split y into two equal-length substrings $y = u \circ v$. Our predicate R is simply $R(x, u, v) = M(x, u \circ v)$.

Now, if $x \in L$, then it must be that $\exists u \ \forall v \ R(x, u, v) = 1$, for if not, then $\forall u \ \exists v \ R(x, u, v) = 0$ which implies that M(x, y) = 0 for at least $2^{|y|/2} \gg 2^{|y|^{1/3}}$ values of y, a contradiction. Similarly, if $x \notin L$, then it must be that $\exists v \ \forall u \ R(x, u, v) = 0$, for if not, then $\forall v \ \exists u \ R(x, u, v) = 1$ which implies that M(x, y) = 1 for at least $2^{|y|/2} \gg 2^{|y|^{1/3}}$ values of y, a contradiction.

We conclude that $L \in \mathbf{S}_{2}^{\mathbf{p}}$ and therefore $\mathbf{BPP} \subseteq \mathbf{S}_{2}^{\mathbf{p}}$ as required.

Another solution is to observe that **BPP** is contained in (2-sided error) **MA** and apply the previous part!

(f) The following notation will be useful: given a circuit C with a single Boolean output, let \tilde{C} be the circuit derived from C that uses C as if it were a circuit for SAT to actually find

a satisfying assignment (via the self-reducibility of SAT). If at any point in the repeated applications of C, there is an inconsistent answer, \tilde{C} outputs some fixed string, say, the all-zeros string. So, \tilde{C} has as many outputs as inputs, and $|\tilde{C}| \leq \text{poly}(|C|)$, and if C is a circuit correctly computing SAT, then \tilde{C} will correctly output a satisfying assignment if there is one.

Let L be a language in Π_2^p , so we have

$$\begin{array}{ll} x \in L & \Rightarrow & \forall y \; \exists z \; (x,y,z) \in R \\ x \notin L & \Rightarrow & \exists y \; \forall z \; (x,y,z) \notin R \end{array}$$

for some language $R \in \mathbf{P}$. Observe that the language $L' = \{(x, y) : \exists z \ (x, y, z) \in R\}$ is in **NP**, and so given a pair (x, y) we can use a procedure that solves SAT and actually returns a satisfying assignment if there is one to find z for which $(x, y, z) \in R$ if such a z exists.

Define R' to be the language consisting of exactly the triples (x, C, y) for which using \tilde{C} , we obtain a z for which $(x, y, z) \in R$. Notice that R' can be evaluated in polynomial time.

We are assuming that SAT has polynomial-size circuits. If $x \in L$, then there exists a circuit C (the one that computes SAT) for which for all y, \tilde{C} will successfully find a z that causes R' to accept. Thus $x \in L \Rightarrow \exists C \forall y (x, C, y) \in R'$.

If $x \notin L$, then there is some y^* for which $\forall z \ (x, y^*, z) \notin R$. Thus for all $C, \ (x, C, y^*) \notin R'$, because no matter what z we find using \tilde{C} , it will not be the case that $(x, y^*, z) \in R$. Therefore $x \notin L \Rightarrow \exists y \ \forall C \ (x, C, y) \notin R'$. We conclude that $L \in \mathbf{S_2^p}$.

We have shown that $\Pi_2^{\mathbf{p}} \subseteq \mathbf{S}_2^{\mathbf{p}}$. Since $\mathbf{S}_2^{\mathbf{p}}$ is closed under complement, we also have that $\Sigma_2^{\mathbf{p}} \subseteq \mathbf{S}_2^{\mathbf{p}}$. Using part (a), we have $\Pi_2^{\mathbf{p}} = \Sigma_2^{\mathbf{p}} = \mathbf{S}_2^{\mathbf{p}}$, and so the PH collapses to $\Sigma_2^{\mathbf{p}} = \mathbf{S}_2^{\mathbf{p}}$ as required.