Final Solutions

Posted: June 8
Chris Umans

1. (a) The procedure that traverses a fan-in 2 depth $O\left(\log ^{i} n\right)$ circuit and outputs a formula runs in \mathbf{L}_{i} - this can be done by a recursive depth-first traversal, which only requires 1 bit of information ("left" or "right") at each level of recursion. The procedure for FVAL (Lecture 2) runs in \log-space, so on a formula of size $2^{O\left(\log ^{i} n\right)}$, it runs in $O\left(\log ^{i} n\right)$ space. Using space-efficient composition of the logspace procedure that generates the circuit together with these two procedures we obtain a procedure to evaluate an $\mathbf{N C}_{i}$ circuit on a given input in only $O\left(\log ^{i} n\right)$ space, as required.
(b) The configuration graph for an $\mathbf{N L} L_{i}$ machine on input x of length n has at most $2^{O\left(\log ^{i} n\right)}$ nodes. The input x is accepted if and only if there is a path from the start node s to the accept node t in this graph. We can construct the incidence matrix A of this graph (with ones on the diagonal), and we observe that $A^{*}=A^{2^{m}}$, for $m=O\left(\log ^{i} n\right.$) has a one in position s, t if and only if there is a path of length at most 2^{m} from s to t (here we are using Boolean matrix multiplication). We can square matrix A with a $O(\log |A|)=O\left(\log ^{i} n\right)$ depth circuit. We repeat this squaring m times, to compute A^{*}. The repeated squaring entails m sequential copies of the squaring circuit, which has depth $O\left(\log ^{i} n\right)$. The total depth is $O\left(\log ^{2 i} n\right)$.
(c) Suppose we show $\mathbf{N L}_{i} \subseteq \mathbf{N C}_{2 i}$ for some $i>1$. Then we have

$$
\mathbf{L}_{i} \subseteq \mathbf{N L}_{i} \subseteq \mathbf{N C}_{2 i} \subseteq \mathbf{P} .
$$

However, we know by the Space Hierarchy Theorem that \mathbf{L} is strictly contained in \mathbf{L}_{i} for $i>1$. Thus we would have proved $\mathbf{L} \neq \mathbf{P}$. In fact, we would have proved something stronger: that $\mathbf{N C}_{1} \neq \mathbf{N C}_{2}$, since an equality would collapse all of the hierarchy to $\mathbf{N C}_{1}$, including $\mathbf{N C}_{2 i}$ (and then we would have $\mathbf{N C}_{1}=\mathbf{L}=\mathbf{L}_{i}=\mathbf{N L}_{i}=\mathbf{N C}_{2 i}$, contradicting the Space Hierarchy Theorem).
2. (a) Fix an $x \in\{0,1\}^{n}$ and a $y \in\{0,1\}^{k}$. Imagine that we have already chosen M. In order to have $h_{M, b}(x)=y$, we must have $M x+b=y$ or equivalently $y-M x=b$. This happens with probability exactly 2^{-k} since b is chosen uniformly from $\{0,1\}^{k}$.
For the second part, we know that $x_{1} \neq x_{2}$. Thus there must be a position i in which they differ. WLOG, assume $\left(x_{1}\right)_{i}=1$ and $\left(x_{2}\right)_{i}=0$. Imagine that we have already chosen all of M except for the i-th column, and denote by M^{\prime} the matrix M with 0 s in the i-th column. Let us denote by $a \in\{0,1\}^{k}$ our choice of the i-th column of M. Note that $h_{M, b}\left(x_{1}\right)=M^{\prime} x_{1}+a+b$ and $h_{M, b}\left(x_{2}\right)=M^{\prime} x_{2}+b$. Thus we are interested in the probability that $a+b=y_{1}-M^{\prime} x_{1}$ and $b=y_{2}-M^{\prime} x_{2}$. Since each of a and b are chosen uniformly and independently from $\{0,1\}^{k}$, this happens with probability $2^{-2 k}$. More precisely, there is a 2^{-k} chance of choosing b equal to the fixed vector $y_{2}-M^{\prime} x_{2}$, and then given the choice of b, there is a 2^{-k} chance of choosing a equal to $y_{1}-M^{\prime} x_{1}-b$.
(b) Here is a 2 -round AM protocol for largeset. The common input is (C, k).

- Arthur picks a random y and a random $k \times n$ matrix M and $b \in\{0,1\}^{k}$ as above and sends them to Merlin.
- Merlin replies with an $x \in\{0,1\}^{n}$.
- Arthur accepts iff $C(x)=1$ and $h_{M, b}(x)=y$.

We have to show completeness and soundness for this protocol. For completeness, set $A=\{x: C(x)=1\}$, and observe that if $|A| \geq 3\left(2^{k}\right)$ then the inequality from the problem statement gives us:

$$
\underset{M, b, y}{\operatorname{Pr}}\left[\exists x \in A \quad h_{M, b}(x)=y\right] \geq 1-\frac{2^{k}}{|A|} \geq \frac{2}{3} .
$$

Thus given a YES instance, with probability at least $2 / 3$, Merlin has a reply that will cause Arthur to accept.
For soundness, again set $A=\{x: C(x)=1\}$, and observe that if $|A| \leq\left(2^{k}\right) / 3$ then from part (a), we have that for each fixed $x \in A$,

$$
\operatorname{Pr}_{M, b, y}\left[h_{M, b}(x)=y\right]=2^{-k} .
$$

Taking a union bound over all $x \in A$, we get

$$
\operatorname{Pr}_{M, b, y}\left[\exists x \in A \quad h_{M, b}(x)=y\right] \leq 2^{-k}|A| \leq \frac{1}{3} .
$$

Thus given a NO instance, the probability that Merlin has a reply that will cause Arthur to accept is at most $1 / 3$.
Finally, apply the transformation from Problem Set 6, Problem 3, to this protocol to achieve perfect completeness.
3. Let L be a language in PSPACE, and let x be an input of length n. Using the given fact, together with the assumption that PSPACE has polynomial-size circuits, there is a polynomial size circuit C that computes the (honest) prover's messages as a function of x and the messages seen so far, in the IP protocol for L.
We need to describe a MA protocol for L. We have Merlin send the circuit C in the first round. Then Arthur simulates the IP protocol for L with input x, evaluating C to determine the prover's messages at each step. This entails flipping polynomially many coins, and evaluating the circuit C polynomially many times. In the end Arthur accepts if the Verifier he is simulating would have accepted.
Now, if x is in L, then there exists a Merlin message that will cause Arthur to accept with probability at least $2 / 3$ - namely, the circuit that correctly computes the Prover messages in the IP protocol for L. On the other hand, if $x \notin L$, then no matter what C is sent in the first round, Arthur will reject with probability at least $2 / 3$, because of the soundness guarantee for the IP protocol. I.e., the evaluations of any circuit C correspond to some (possibly dishonest) prover, and we know that when $x \notin L$, no prover can cause the Verifier to accept with more than $1 / 3$ probability.
This shows that PSPACE \subseteq MA. We know that MA \subseteq PSPACE unconditionally, so we conclude that under the assumption $\mathbf{P S P A C E} \subseteq \mathbf{P} /$ poly, we have $\mathbf{P S P A C E}=\mathbf{M A}$.
4. (a) For a language $L \in \mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$, we have

$$
\begin{aligned}
x \in L & \Rightarrow \exists y \forall z(x, y, z) \in R \\
x \notin L & \Rightarrow \exists z \forall y(x, y, z) \notin R \Rightarrow \forall y \exists z(x, y, z) \notin R
\end{aligned}
$$

Thus $L \in \boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{p}}$. We also have:

$$
\begin{aligned}
x \in L & \Rightarrow \exists y \forall z(x, y, z) \in R \Rightarrow \forall z \exists y(x, y, z) \in R \\
x \notin L & \Rightarrow \exists z \forall y(x, y, z) \notin R
\end{aligned}
$$

and so $L \in \boldsymbol{\Pi}_{\mathbf{2}}^{\mathbf{p}}$. We conclude that $\mathbf{S}_{\mathbf{2}}^{\mathbf{p}} \subseteq\left(\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{p}} \cap \boldsymbol{\Pi}_{\mathbf{2}}^{\mathbf{p}}\right)$.
(b) Let L be an arbitrary language in $\mathbf{P}^{\mathbf{N P}}$ and let M be an oracle Turing Machine that decides L in time n^{c} for some constant c. Fix an input x. Without loss of generality we standardize M so that its oracle is SAT, and all of its oracle queries are 3-CNF formulas with m variables.
We describe the behavior of two machines M_{1} and M_{2} that run in polnyomial time; these are then converted into the circuits C_{1} and C_{2} that the reduction produces from x. Machine M_{1} simulates machine M on input x, until M makes an oracle query: $\phi \in$ SAT?. At this point M_{1} consults its input y, and reads $m+1$ bits of y. If the first bit is 0 , it checks if the remaining m bits are a satisfying assignment to ϕ; if they are it continues simulating M as if M had received a "yes" answer to its query, otherwise it rejects. If the first bit is 1 , it discards the remaining m bits, and continues simulating M as if M had received a "no" answer to its query. We continue in this fashion, reading successive ($m-1$)-bit segments of y as (our simulation of) M encounters successive oracle queries. We stop when M_{1} has simulated $|x|^{c}$ steps of M, at which point it accepts.
Machine M_{2} does exactly the same thing as M_{1}, except that it accepts at the end iff M would have accepted at this point. Note that depending on y, this may or may not agree with what $M^{S A T}$ actually does on input x. However, we claim that the lexicographically first y that M_{1} accepts causes M_{2} to correctly simulate $M^{S A T}$ on input x. This is true because at each query ϕ, the lexicographically first $m+1$ bits that will cause M_{1} to continue its simulation are either (1) 0 followed by the lexicographically first satisfying assignment to ϕ if $\phi \in S A T$, or (2) 1 followed by all zeros if $\phi \notin S A T$. In case (1) our simulation proceeds as if it received a "yes" answer to the query and in case (2) our simulation proceeds as if it received a "no" answer; in both cases this correctly simulates $M^{S A T}$.
We conclude that M_{2} accepts the lexicographically first y accepted by M_{1} iff $M^{S A T}$ accepts x, as required.
We also should argue that the problem is in $\mathbf{P}^{\mathbf{N P}}$, but this is easy, because we can do a binary search (using the NP oracle) to identify the lexicographically first y accepted by C_{1}, and then plug it into C_{2}.
(c) We argue that LEX-FIRST-ACCEPTANCE is in $\mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$. Let $\left(C_{1}, C_{2}\right)$ be an instance of Lex-FIRST-acceptance. Define the function $f\left(y, y^{\prime}\right)$ to be $C_{2}\left(y_{\text {min }}\right)$ where $y_{\text {min }}$ is the lexicographically first among y, y^{\prime} that C_{1} accepts; or 0 if $C_{1}(y)=C_{1}\left(y^{\prime}\right)=0$. We claim that

$$
\begin{aligned}
& \left(C_{1}, C_{2}\right) \in \text { LEX-FIRST-ACCEPTANCE } \Rightarrow \exists y \forall y^{\prime} f\left(y, y^{\prime}\right)=1 \\
& \left(C_{1}, C_{2}\right) \notin \text { LEX-FIRST-ACCEPTANCE } \Rightarrow \exists y^{\prime} \forall y f\left(y, y^{\prime}\right)=0
\end{aligned}
$$

This is easily seen by taking y to be the lexicographically first string accepted by C_{1} in the first case, and y^{\prime} to be the lexicographically first string accepted by C_{1} in the second case. Since LEX-FIRST-ACCEPTANCE is $\mathbf{P}^{\mathbf{N P}}$-complete, we conclude that $\mathbf{P}^{\mathbf{N P}} \subseteq \mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$.
(d) By error reduction, we may assume that for every language L in MA there is a language R in \mathbf{P} for which

$$
\begin{aligned}
x \in L & \Rightarrow \exists y \operatorname{Pr}_{z}[(x, y, z) \in R]=1 \\
x \notin L & \Rightarrow \forall y \operatorname{Pr}_{z}[(x, y, z) \in R]<2^{-|y|} .
\end{aligned}
$$

We claim that

$$
\begin{aligned}
x \in L & \Rightarrow \exists y \forall z(x, y, z) \in R \\
x \notin L & \Rightarrow \exists z \forall y(x, y, z) \notin R,
\end{aligned}
$$

which implies that $L \in \mathbf{S}_{\mathbf{2}}^{\mathbf{P}}$ as required. The first part is obvious from the definitions. For the second part, observe that

$$
\forall y \operatorname{Pr}_{z}[(x, y, z) \in R]<2^{-|y|}
$$

implies (by the union bound)

$$
\begin{equation*}
\operatorname{Pr}_{z}[\exists y(x, y, z) \in R]<2^{|y|} 2^{-|y|}=1 . \tag{0.1}
\end{equation*}
$$

This implies $\exists z \forall y(x, y, z) \notin R$ as required.
(e) Given a language $L \in \mathbf{B P P}$, we can use strong error reduction to produce a probabilistic polynomial time TM M for which:

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)=1] \geq 1-\frac{2^{|y|^{1 / 3}}}{2^{|y|}} \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)=0] \geq 1-\frac{2^{|y|^{1 / 3}}}{2^{|y|}} .
\end{aligned}
$$

We split y into two equal-length substrings $y=u \circ v$. Our predicate R is simply $R(x, u, v)=M(x, u \circ v)$.
Now, if $x \in L$, then it must be that $\exists u \forall v R(x, u, v)=1$, for if not, then $\forall u \exists v R(x, u, v)=$ 0 which implies that $M(x, y)=0$ for at least $2^{|y| / 2} \gg 2^{|y|^{1 / 3}}$ values of y, a contradiction. Similarly, if $x \notin L$, then it must be that $\exists v \forall u R(x, u, v)=0$, for if not, then $\forall v \exists u R(x, u, v)=1$ which implies that $M(x, y)=1$ for at least $2^{|y| / 2} \gg 2^{|y|^{1 / 3}}$ values of y, a contradiction.
We conclude that $L \in \mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$ and therefore $\mathbf{B P P} \subseteq \mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$ as required.
Another solution is to observe that BPP is contained in (2-sided error) MA and apply the previous part!
(f) The following notation will be useful: given a circuit C with a single Boolean output, let \tilde{C} be the circuit derived from C that uses C as if it were a circuit for $S A T$ to actually find
a satisfying assignment (via the self-reducibility of $\underset{\tilde{C}}{\mathrm{SAT}}$). If at any point in the repeated applications of C, there is an inconsistent answer, \tilde{C} outputs some fixed string, say, the all-zeros string. So, \tilde{C} has as many outputs as inputs, and $|\tilde{C}| \leq \operatorname{poly}(|C|)$, and if C is a circuit correctly computing SAT, then \tilde{C} will correctly output a satisfying assignment if there is one.
Let L be a language in $\boldsymbol{\Pi}_{\mathbf{2}}^{\mathrm{p}}$, so we have

$$
\begin{aligned}
x \in L & \Rightarrow \forall y \exists z(x, y, z) \in R \\
x \notin L & \Rightarrow \exists y \forall z(x, y, z) \notin R
\end{aligned}
$$

for some language $R \in \mathbf{P}$. Observe that the language $L^{\prime}=\{(x, y): \exists z(x, y, z) \in R\}$ is in NP, and so given a pair (x, y) we can use a procedure that solves SAT and actually returns a satisfying assignment if there is one to find z for which $(x, y, z) \in R$ if such a z exists.
Define R^{\prime} to be the language consisting of exactly the triples (x, C, y) for which using \tilde{C}, we obtain a z for which $(x, y, z) \in R$. Notice that R^{\prime} can be evaluated in polynomial time.
We are assuming that SAT has polynomial-size circuits. If $x \in L$, then there exists a circuit C (the one that computes SAT) for which for all y, \tilde{C} will successfully find a z that causes R^{\prime} to accept. Thus $x \in L \Rightarrow \exists C \forall y(x, C, y) \in R^{\prime}$.
If $x \notin L$, then there is some y^{*} for which $\forall z\left(x, y^{*}, z\right) \notin R$. Thus for all $C,\left(x, C, y^{*}\right) \notin R^{\prime}$, because no matter what z we find using \tilde{C}, it will not be the case that $\left(x, y^{*}, z\right) \in R$. Therefore $x \notin L \Rightarrow \exists y \forall C(x, C, y) \notin R^{\prime}$. We conclude that $L \in \mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$.
We have shown that $\boldsymbol{\Pi}_{\mathbf{2}}^{\mathbf{p}} \subseteq \mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$. Since $\mathbf{S}_{\mathbf{2}}^{\mathbf{p}}$ is closed under complement, we also have that $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathrm{p}} \subseteq \mathbf{S}_{\mathbf{2}}^{\mathrm{p}}$. Using part (a), we have $\boldsymbol{\Pi}_{\mathbf{2}}^{\mathrm{p}}=\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathrm{p}}=\mathbf{S}_{\mathbf{2}}^{\mathrm{p}}$, and so the PH collapses to $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathrm{p}}=\mathbf{S}_{\mathbf{2}}^{\mathrm{p}}$ as required.

