CS 151 Complexity Theory

Spring 2004

Problem Set 6

Out: May 13 Due: May 20

Reminder: you are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. You may consult the course materials and text (Papadimitriou). Please attempt all problems.

- 1. The following problem comes from Learning Theory, where the VC-dimension gives important information about the difficulty of learning a given concept. Given a collection $\mathcal{S} = \{S_1, S_2, \ldots, S_m\}$ of subsets of a finite set U, the VC dimension of \mathcal{S} is the size of the largest set $X \subseteq U$ such that for every $X' \subseteq X$, there is an i for which $S_i \cap X = X'$ (we say that X is shattered by \mathcal{S}). A Boolean circuit C that computes a function $f: \{0,1\}^m \times \{0,1\}^n \to \{0,1\}$ succinctly represents a collection \mathcal{S} of 2^m subsets of $U = \{0,1\}^n$ as follows: the set S_i consists of exactly those elements x for which C(i,x) = 1. Finally, the language VC-DIMENSION is the set pairs (C,k) for which C represents a collection of subsets \mathcal{S} whose VC dimension is at least k.
 - (a) Argue that VC-DIMENSION is in $\Sigma_3^{\mathbf{p}}$. Hint: what is the size of the largest possible set X shattered by a collection of 2^m subsets?
 - (b) Show that VC-DIMENSION is $\Sigma_3^{\mathbf{p}}$ -complete by reducing from QSAT₃. Hint: the universe U should be the set $\{0,1\}^n \times \{1,2,3,\ldots,n\}$. For each n-bit string a, define the subset $U_a = \{a\} \times \{1,2,3,\ldots,n\}$. The sets in your instance of VC-DIMENSION should each be a subset of some U_a ; note that the problem definition does not require that sets S_i and S_j to be different for $i \neq j$ —indeed your reduction will probably produce many copies of the same set with different "names."
- 2. Here is a new class involving alternating quantifiers: $\mathbf{S_2^P}$ (the "S" stands for "symmetric alternation"). A language L is in $\mathbf{S_2^P}$ if and only if there is a language $R \in \mathbf{P}$ for which

$$x \in L \implies \exists y \ \forall z \ (x, y, z) \in R$$

 $x \notin L \implies \exists z \ \forall y \ (x, y, z) \notin R$

where as usual |y| = poly(|x|) and |z| = poly(|x|). To make sense of this definition it is useful to think of R as defining for each x a 0/1 matrix M_x whose rows are indexed by y and whose columns are indexed by z. Entry (y, z) of matrix M_x is 1 if $(x, y, z) \in R$ and 0 otherwise. Now, the definition says that $x \in L$ if there is an all-ones row in M_x and $x \notin L$ if there is an all-zeros column in M_x (and it is clear that these configurations are mutually exclusive).

- (a) Argue that $S_2^p \subseteq (\Sigma_2^p \cap \Pi_2^p)$.
- (b) Prove that $\mathbf{P^{NP}} \subseteq \mathbf{S_2^p}$. Hint (from Goldreich-Zuckerman): Let M be a deterministic OTM. Call a string T a valid transcript of M on input x if it contains a sequence of

pairs (q_i, a_i) where q_i is an oracle query and $a_i \in \{\text{yes}, \text{no}\}$, and it correctly describes the step-by-step computation of M on input x in which oracle query q_i is answered by a_i . We say that a valid transcript is supported by a sequence S of pairs (q_j, w_j) if for every $a_i = \text{yes}$, there is some j for which $q_i = q_j$ and w_j is an **NP** witness for query q_i . We say that a valid transcript is consistent with a sequence S of pairs (q_j, w_j) if for every $a_i = \text{no}$, there is no j for which $q_i = q_j$ and w_j is a **NP** witness for query q_i . First argue that for every $x \in L$, there exists a pair (T, S) for which T is a valid transcript of M on input x that ends with M accepting, that is supported by S and consistent with every sequence S'. Similarly, for every $x \notin L$, there exists a pair (T, S) for which T is a valid transcript of M on input x that ends with M rejecting, that is supported by Sand consistent with every sequence S'.

- (c) Prove a stronger form of the Sipser-Lautemann Theorem: $\mathbf{BPP} \subseteq \mathbf{S}_2^{\mathbf{p}}$.
- (d) Prove a stronger form of the Karp-Lipton Theorem: if SAT has polynomial-size circuits then $\mathbf{PH} = \mathbf{S}_2^{\mathbf{p}}$.