CS 151 Complexity Theory

Spring 2004

Problem Set 5

Out: May 6
Due: May 13

Reminder: you are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. You may consult the course materials and text (Papadimitriou). Please attempt all problems.

1. Let f be a family of one-way permutations, and let $b=\left\{b_{n}\right\}$ be a hard bit for f^{-1}. Use f and b to describe a language L for which $L \in(\mathbf{N P} \cap \mathbf{c o N P})-\mathbf{B P P}$.
The moral of this problem is: the assumption we used to construct the BMY pseudo-random generator placed a priori bounds on the power of BPP - it presumed that BPP was not powerful enough to simulate $\mathbf{N P} \cap \mathbf{c o N P}$ - and this is one reason to prefer the NW construction, which is based on an assumption that does not place such bounds on the power of BPP.
2. minimum truth table circuit (MTTC) is the language of pairs (x, k) for which (1) $|x|$ is a power of 2 , and (2) there exists a Boolean circuit of size at most k computing the function whose truth table is x. Observe that MTTC is in NP.
(a) Show that MTTC $\in \mathbf{P}$ implies $\mathbf{B P P}=\mathbf{Z P P}$.
(b) Show that $\mathbf{N P} \mathbf{B P P}^{\mathbf{B P}} \mathbf{Z P P}^{\mathbf{N P}}$.

Hint: for both parts you may want to refer to Shannon's theorem from Lecture 5 .
3. CNFs and DNFs. Recall that a Boolean formula is said to be in $3-C N F$ form if it is the conjunction of clauses, with each clause being the disjunction of at most 3 literals. A Boolean formula is said to be in $3-D N F$ form if it is the disjunction of terms, with each term being the conjunction of at most 3 literals.
(a) Two useful transformations: describe a polynomial-time computable function that is given as input a fan-in two (\wedge, \vee, \neg)-circuit $C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and produces a 3-CNF Boolean formula ϕ on variables $x_{1}, x_{2}, \ldots, x_{n}$ and additional variables $z_{1}, z_{2}, \ldots, z_{m}$ for which

$$
\exists z_{1}, z_{2}, \ldots, z_{m} \phi\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots, z_{m}\right)=1 \Leftrightarrow C\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1 .
$$

Also, describe a polynomial-time computable function that is given as input a fan-in two (\wedge, \vee, \neg)-circuit $C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and produces a 3 -DNF Boolean formula ϕ on variables $x_{1}, x_{2}, \ldots, x_{n}$ and additional variables $z_{1}, z_{2}, \ldots, z_{m}$ for which

$$
\forall z_{1}, z_{2}, \ldots, z_{m} \phi\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots, z_{m}\right)=1 \Leftrightarrow C\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1 .
$$

(b) The definition of QSAT_{i} is delicate: recall the definition of QSAT_{i} (below each x_{j} refers to a vector of variables):
$\operatorname{QSAT}_{i}(\mathrm{i}$ odd $)=\left\{3\right.$ - $\left.\operatorname{CNFs} \phi\left(x_{1}, x_{2}, \ldots, x_{i}\right): \exists x_{1} \forall x_{2} \exists x_{3}, \ldots \exists x_{i} \phi\left(x_{1}, x_{2}, \ldots, x_{i}\right)=1\right\}$ $\operatorname{QSAT}_{i}(\mathrm{i}$ even $)=\left\{3\right.$-DNFs $\left.\phi\left(x_{1}, x_{2}, \ldots, x_{i}\right): \exists x_{1} \forall x_{2} \exists x_{3}, \ldots \forall x_{i} \phi\left(x_{1}, x_{2}, \ldots, x_{i}\right)=1\right\}$ We saw that QSAT $_{i}$ is Σ_{i}^{P}-complete. Argue that if the "CNF" and "DNF" in the above definitions were exchanged, then QSAT_{i} would be in Σ_{i-1}^{P}.

