CS 151 Complexity Theory

Spring 2004

Problem Set 4

Out: April 22 Due: April 29

Reminder: you are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. You may consult the course materials and text (Papadimitriou). Please attempt all problems.

- 1. Define $\widetilde{\mathbf{ZPP}}$ to be the class of all languages decided by a probabilistic Turing Machine running in *expected* polynomial time. That is, given a language $L \in \widetilde{\mathbf{ZPP}}$ there is a probabilistic Turing Machine M(x,y) with the following behavior: on input $x \in L$, M always accepts, on input $x \notin L$, M always rejects, and $E_y[\#]$ steps before M(x,y) halts $] = |x|^{O(1)}$. Show that $\widetilde{\mathbf{ZPP}} = \mathbf{ZPP}$.
- 2. List-decoding of Reed-Solomon codes. Throughout this problem \mathbb{F}_q is the field with q elements. Given a k-bit message m, the associated Reed-Solomon codeword C(m) is described by first producing a degree k-1 polynomial $p_m(x) = \sum_{i=0}^{k-1} m_i x^i$, and then evaluating that polynomial at all of the elements in the field \mathbb{F}_q : $C(m) = (p_m(w))_{w \in \mathbb{F}_q}$. You should think of q as being polynomial in k.

Now, we are given a received word R that has suffered e errors. We know that if e > q/2 unique decoding is impossible, since the distance of this code is a priori at most q. In this problem you will show that efficient list-decoding is possible when e is as large as $q - \sqrt{2kq}$. If we choose, say, $q = k^2$, then this implies that we can recover from up to a 1 - o(1) fraction of errors!

You may need the following fact about polynomials: it follows from polynomial division that $(x - \alpha)$ divides a polynomial p(x) iff α is a root of p.

- (a) We view the received word R as a function $R : \mathbb{F}_q \to \mathbb{F}_q$. Show that one can efficiently find a polynomial $Q(x,y) \not\equiv 0$ with x-degree at most \sqrt{q} and y-degree at most \sqrt{q} for which Q(w,R(w))=0 for all $w \in \mathbb{F}_q$. Hint: elementary linear algebra is sufficient here.
- (b) Let $p: \mathbb{F}_q \to \mathbb{F}_q$ be a polynomial of degree at most k-1 for which $|\{w \in F_q : p(w) \neq R(w)\}| \leq q-t$. That is, p is a RS codeword that agrees with the received word R in at least t locations. Show that if $t > k\sqrt{q}$ then (y-p(x)) divides Q(x,y). (Hint: view Q as a univariate polynomial in y with coefficients in $\mathbb{F}_q[x]$.) Conclude that using an efficient algorithm for factoring multivariate polynomials (which is known), we can find all codewords which have agreement $t > k\sqrt{q}$ with R.
- (c) The (1, k-1)-weighted degree of a polynomial $Q(x,y) = \sum_{i,j} q_{i,j} x^i y^j$ is defined to be $\max\{i+(k-1)j: q_{i,j} \neq 0\}$. Refine your analysis in parts (a) and (b) to show that one can find Q(x,y) with the required properties and with (1,k-1)-weighted degree at most $\sqrt{2kq}$, and therefore can tolerate agreement only $t > \sqrt{2kq}$.

3. List-decoding of the binary Hadamard code. Throughout this problem \mathbb{F}_2 is the field with 2 elements (addition and multiplication are performed modulo 2). Given a k-bit message m, the associated Hadamard codeword C(m) is described by first producing a linear multivariate polynomial $p_m(x_1, x_2, \ldots, x_k) = \sum_{i=0}^{k-1} m_i x_i$, and then evaluating that polynomial at all vectors in the space \mathbb{F}_2^k : $C(m) = (p_m(w))_{w \in \mathbb{F}_2^k}$. Thus the codeword has $n = 2^k$ bits, and the w-th bit is the inner product mod 2 of the k-bit vectors m and w.

Since the distance of the Hadamard code is (1/2)n (by Schwartz-Zippel), unique decoding is only possible from up to (1/4)n errors. In this problem you will show that efficient *list-decoding* is possible from a received word R that has suffered up to $(1/2 - \epsilon)n$ errors.

You may need to use Chebyshev's Inequality: for a random variable X and any k > 0,

$$\Pr[|X - \mathrm{E}[X]| \ge k] \le \frac{\mathrm{Var}[X]}{k^2}.$$

(a) Consider the following probabilistic procedure. Pick ℓ vectors $v_1, v_2, \ldots, v_\ell \in \mathbb{F}_2^k$ independently and uniformly at random. For a subset $S \subseteq \{1, 2, 3, \ldots, \ell\}$ define $u_S = \sum_{i \in S} v_i$. Show that for every non-empty set S and every $\alpha \in \mathbb{F}_2^k$, we have $\Pr[u_S = \alpha] = 2^{-k}$. Then show that for every pair of non-empty subsets S and T with $S \neq T$, and every $\alpha, \beta \in \mathbb{F}_2^k$, we have:

$$\Pr[u_S = \alpha \land u_T = \beta] = \Pr[u_S = \alpha] \Pr[u_T = \beta].$$

In other words, the set of vectors u_S are pairwise independent random variables uniformly distributed on \mathbb{F}_2^k .

(b) Suppose that the received word R agrees with C = C(m) in at least a $1/2 + \epsilon$ fraction of its n bits. Verify for yourself that $C_w + C_{w+e_i} = m_i$ (here e_i is the i-th elementary vector in \mathbb{F}_2^k – the vector with 1 in the i-th position and zeros elsewhere). Of course, in our decoding algorithm we do not have access to C to find C_w and C_{w+e_i} . So, we will replace C_w with a "guess" (for now imagine it is always correct), and C_{w+e_i} with R_{w+e_i} (which may or may not be correct). Show that for all i:

$$\Pr\left[|\{S \neq \emptyset : C_{u_S} + R_{u_S + e_i} = m_i\}| \leq \frac{2^{\ell} - 1}{2}\right] \leq \frac{1}{4\epsilon^2 (2^{\ell} - 1)}$$

Hint: define indicator random variables for the event $R_{u_S+e_i} = C_{u_S+e_i}$. Use the fact that for pairwise independent random variables, the variance of the sum is the sum of the variances.

- (c) Describe a probabilistic procedure A that has the following behavior:
 - it has random access to a word R that agrees with C = C(m) in at least a $1/2 + \epsilon$ fraction of its n bits, and
 - it makes $O(n\epsilon^{-2})$ queries to R, and
 - it runs in time $poly(n, \epsilon^{-1})$, and
 - with probability at least 3/4 it outputs a list of $L = O(n\epsilon^{-2})$ "candidate messages" m_1, m_2, \ldots, m_L that includes the original message m.

Hint: argue that it takes surprisingly few bits to describe $(C_{u_S})_{S\neq\emptyset}$.