
1

CS151
Complexity Theory

Lecture 9
April 27, 2004

April 27, 2004 CS151 Lecture 9 2

Outline

• The Nisan-Wigderson generator

• Error correcting codes from polynomials

• Turning worst-case hardness into
average-case hardness

April 27, 2004 CS151 Lecture 9 3

Hardness vs. randomness

• We have shown:

If one-way permutations exist then

BPP ⊂ ∩�
>0 TIME(2n

�
) � EXP

• simulation is better than brute force, but
just barely

• stronger assumptions on difficulty of
inverting OWF lead to better simulations…

April 27, 2004 CS151 Lecture 9 4

Hardness vs. randomness

• We will show:

If E requires exponential size circuits then
BPP = P

by building a different generator from
different assumptions.

E = ∪ ∪ ∪ ∪kDTIME(2kn)

April 27, 2004 CS151 Lecture 9 5

Hardness vs. randomness

• BMY: for every
�

> 0, G � is a PRG with
seed length t = m �

output length m
error � < 1/md (all d)

fooling size s = me (all e)
running time mc

• running time of simulation dominated by 2t

April 27, 2004 CS151 Lecture 9 6

Hardness vs. randomness

• To get BPP = P, would need t = O(log m)
• BMY building block is one-way-

permutation:
f:{0,1}t � {0,1}t

• required to fool circuits of size me (all e)
• with these settings a circuit has time to

invert f by brute force!
can’t get BPP = P with this type of PRG

2

April 27, 2004 CS151 Lecture 9 7

Hardness vs. randomness

• BMY pseudo-random generator:
– one generator fooling all poly-size bounds

– one-way-permutation is hard function

– implies hard function in NP ∩∩∩∩ coNP

• New idea (Nisan-Wigderson):
– for each poly-size bound, one generator
– hard function allowed to be in

E = ∪∪∪∪kDTIME(2kn)

April 27, 2004 CS151 Lecture 9 8

Comparison

BMY: �
�

> 0 PRG G � NW: PRG G

seed length t = m � t = O(log m)
running time tcm mc

output length m m
error � < 1/md (all d) � < 1/m
fooling size s = me (all e) s = m

April 27, 2004 CS151 Lecture 9 9

NW PRG

• NW: for fixed constant
�

, G = {Gn} with
seed length t = O(log n) t = O(log m)
running time nc mc

output length m = n � m
error � < 1/m
fooling size s = m

• Using this PRG we obtain BPP = P
– to fool size nk use Gnk/ �
– running time O(nk + nck/ �)2t = poly(n)

April 27, 2004 CS151 Lecture 9 10

NW PRG
• First attempt: build PRG assuming E

contains unapproximable functions

Definition: The function family

f = {fn}, fn:{0,1}n → {0,1}
is s(n)-unapproximable if for every family
of size s(n) circuits {Cn}:

Prx[Cn(x) = fn(x)] � ½ + 1/s(n).

April 27, 2004 CS151 Lecture 9 11

One bit

• Suppose f = {fn } is s(n)-unapproximable,
for s(n) = 2

�
(n), and in E

• a “1-bit” generator family G = {Gn}:
Gn(y) = y � flog n(y)

• Idea: if not a PRG then exists a predictor
that computes flog n with better than ½ +
1/s(log n) agreement; contradiction.

April 27, 2004 CS151 Lecture 9 12

One bit

• Suppose f = {fn } is s(n)-unapproximable,
for s(n) = 2

�
n, and in E

• a “1-bit” generator family G = {Gn}:
Gn(y) = y � flog n(y)

– seed length t = log n
– output length m = log n + 1 (want n �)
– fooling size s ≈ s(log n) = n �
– running time nc

– error � ≈ 1/s(log n) = 1/n � < 1/m

3

April 27, 2004 CS151 Lecture 9 13

Many bits

• Try outputting many evaluations of f:
G(y) = f(b1(y)) � f(b2(y)) � … � f(bm(y))

• Seems that a predictor must evaluate
f(bi(y)) to predict i-th bit

• Does this work?

April 27, 2004 CS151 Lecture 9 14

Many bits

• Try outputting many evaluations of f:
G(y) = f(b1(y)) � f(b2(y)) � … � f(bm(y))

• predictor might notice correlations without
having to compute f

• but, more subtle argument works for a
specific choice of b1…bm

April 27, 2004 CS151 Lecture 9 15

Nearly-Disjoint Subsets

Definition: S1,S2,…,Sm ⊂ {1…t} is an (h, a)
design if
– for all i, |Si| = h

– for all i
�

j, |Si ∩ Sj| � a

������

��

��

��

April 27, 2004 CS151 Lecture 9 16

Nearly-Disjoint Subsets

Lemma: for every � > 0 and m < n can in
poly(n) time construct an

(h = log n, a = � log n) design

S1,S2,…,Sm ⊂ {1…t} with t = O(log n).

April 27, 2004 CS151 Lecture 9 17

Nearly-Disjoint Subsets

• Proof sketch:
– pick random (log n)-subset of {1…t}

– set t = O(log n) so that expected overlap with
a fixed Si is � log n/2

– probability overlap with Si is > � log n is at
most 1/n

– union bound: some subset has required small
overlap with all Si picked so far…

– find it by exhaustive search; repeat n times.

April 27, 2004 CS151 Lecture 9 18

The NW generator

• f ∈ E s(n)-unapproximable, for s(n) = 2
�

n

• S1,…,Sm ⊂ {1…t} (log n, a =
�

log n/3)
design with t = O(log n)

Gn(y)=flog n(y|S1
) � flog n(y|S2

) � … � flog n(y|Sm
)

	�	�		�	�����	�	�	���		�	�	
��
���

������

4

April 27, 2004 CS151 Lecture 9 19

The NW generator

Theorem (Nisan-Wigderson): G={Gn} is a
pseudo-random generator with:

– seed length t = O(log n)
– output length m = n � /3

– running time nc

– fooling size s = m
– error � = 1/m

April 27, 2004 CS151 Lecture 9 20

The NW generator

• Proof:
– assume does not � -pass statistical test C =

{Cm} of size s:

|Prx[C(x) = 1] – Pry[C(Gn(y)) = 1]| > �

– can transform this distinguisher into a
predictor P of size s’ = s + O(m):

Pry[P(Gn(y)1…i-1) = Gn(y)i] > ½ + � /m

April 27, 2004 CS151 Lecture 9 21

The NW generator

• Proof (continued):
Pry[P(Gn(y)1…i-1) = Gn(y)i] > ½ + � /m

– fix bits outside of Si to preserve advantage:

Pry’[P(Gn(αy’β)1…i-1) = Gn(αy’β)i] > ½ + � /m

βα

Gn(y)=flog n(y|S1
) � flog n(y|S2

) � … � flog n(y|Sm
)

	�	�		�	�����	�	�	���		�	�	
��
���

��� ��

April 27, 2004 CS151 Lecture 9 22

α β

The NW generator

• Proof (continued):
– Gn(αy’β)i is exactly flog n(y’)
– for j � i, as vary y’, Gn(αy’β)i varies over 2a values!
– hard-wire up to (m-1) tables of 2a values to provide

Gn(αy’β)1…i-1

Gn(y)=flog n(y|S1
) � flog n(y|S2

) � … � flog n(y|Sm
)

	�	�		�	�����	�	�	���		�	�	
��
���

��� ��

April 27, 2004 CS151 Lecture 9 23

The NW generator
Gn(y)=flog n(y|S1

) � flog n(y|S2
) � … � flog n(y|Sm

)

	�	�		�	�����	�	�	���		�	�	
��
���

�

�����������

��
���� ���

��

� ���������� � ����� !���"��
#�����
 ���$��%

� "�&"��"
��'($�(��������

)��(����
����$��!%

� *���+"��*����
hardwired tables

April 27, 2004 CS151 Lecture 9 24

Worst-case vs. Average-case

Theorem (NW): if E contains 2
�

(n)-unapp-
roximable functions then BPP = P.

• How reasonable is unapproximability
assumption?

• Hope: obtain BPP = P from worst-case
complexity assumption
– try to fit into existing framework without new

notion of “unapproximability”

5

April 27, 2004 CS151 Lecture 9 25

Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)

If E contains functions that require size
2

�
(n) circuits, then E contains 2

�
(n) –unapp-

roximable functions.

• Proof:
– main tool: error correcting code

April 27, 2004 CS151 Lecture 9 26

Error-correcting codes

• Error Correcting Code (ECC):
C: � k → � n

• message m ∈ � k

• received word R
– C(m) with some positions corrupted

• if not too many errors, can decode: D(R) = m
• parameters of interest:

– rate: k/n
– distance:

d = minm≠m’ � (C(m), C(m’))

,� � -

April 27, 2004 CS151 Lecture 9 27

Distance and error correction

• C is an ECC with distance d

• can uniquely decode from up to �d/2�
errors

.�

�

April 27, 2004 CS151 Lecture 9 28

Distance and error correction

• can find short list of messages (one
correct) after closer to d errors!

Theorem (Johnson): a binary code with
distance (½ -

�
2)n has at most O(1/

�
2)

codewords in any ball of radius (½ -
�

)n.

April 27, 2004 CS151 Lecture 9 29

Example: Reed-Solomon

• alphabet � = Fq : field with q elements

• message m ∈ � k

• polynomial of degree at most k-1

pm(x) = � i=0…k-1 mixi

• codeword C(m) = (pm(x))x ∈ Fq

• rate = k/q

April 27, 2004 CS151 Lecture 9 30

Example: Reed-Solomon

• Claim: distance d = q – k + 1
– suppose � (C(m), C(m’)) < q – k + 1

– then there exist polynomials pm(x) and pm’(x)
that agree on more than k-1 points in Fq

– polnomial p(x) = pm(x) - pm’(x) has more than
k-1 zeros

– but degree at most k-1…
– contradiction.

6

April 27, 2004 CS151 Lecture 9 31

Example: Reed-Muller

• Parameters: t (dimension), h (degree)

• alphabet � = Fq : field with q elements

• message m ∈ � k

• multivariate polynomial of total degree at
most h:

pm(x) = � i=0…k-1 miMi

{Mi} are all monomials of degree � h

April 27, 2004 CS151 Lecture 9 32

Example: Reed-Muller

• Mi is monomial of total degree h
– e.g. x1

2x2x4
3

– need # monomials (h+t choose t) > k

• codeword C(m) = (pm(x))x ∈ (Fq)t

• rate = k/qt

• Claim: distance d = (1 - h/q)qt

– proof: Schwartz-Zippel: polynomial of degree
h can have at most h/q fraction of zeros

April 27, 2004 CS151 Lecture 9 33

Codes and hardness

• Reed-Solomon (RS) and Reed-Muller
(RM) codes are efficiently encodable

• efficient unique decoding?
– yes (classic result)

• efficient list-decoding?
– yes (recent result: Sudan. On problem set.)

April 27, 2004 CS151 Lecture 9 34

Codes and Hardness

• Use for worst-case to average case:

truth table of f:{0,1}log k → {0,1}
(worst-case hard)

truth table of f’:{0,1}log n → {0,1}
(average-case hard)

	 � 	 	� 	 � 	 �

	 � 	 	� 	 � 	,� �� 	 		 � 	

April 27, 2004 CS151 Lecture 9 35

Codes and Hardness

• if n = poly(k) then

f ∈ E implies f’ ∈ E

• Want to be able to prove:
if f’ is s’-approximable,

then f is computable by a
size s = poly(s’) circuit

April 27, 2004 CS151 Lecture 9 36

Codes and Hardness

• Key: circuit C that approximates f’ implicitly
gives received word R

• Decoding procedure D “computes” f
exactly

	 � � 		 	 � 	-� 	 �	 	 	

	 � 	 	� 	 � 	,� �� 	 		 � 	

/ ,
� -�0��+������*�"��
��������
��

�*�����
��*����

