CS151
Complexity Theory

Lecture 9
April 27, 2004

Outline

¢ The Nisan-Wigderson generator
« Error correcting codes from polynomials

 Turning worst-case hardness into
average-case hardness

April 27, 2004 CS151 Lecture 9 2

Hardness vs. randomness

* We have shown:
If one-way permutations exist then
BPP O ngs, TIME(2"®) C EXP

» simulation is better than brute force, but
just barely

* stronger assumptions on difficulty of
inverting OWF lead to better simulations...

April 27, 2004 CS151 Lecture 9

3

Hardness vs. randomness

* We will show:

If E requires exponential size circuits then
BPP=P

by building a different generator from
different assumptions.

E = O,DTIME(2k")

April 27, 2004 CS151 Lecture 9 4

Hardness vs. randomness

« BMY: for every & > 0, G%is a PRG with
seed length t = m®
output length m
error € < 1/md (all d)
fooling size S = m€ (all)
running time me¢

 running time of simulation dominated by 2!

April 27, 2004 CS151 Lecture 9

Hardness vs. randomness

To get BPP = P, would need t = O(log m)

BMY building block is one-way-
permutation:

f:{0,1}' — {0,1}
required to fool circuits of size me (all e)

with these settings a circuit has time to
invert f by brute force!

can’'t get BPP = P with this type of PRG

April 27, 2004 CS151 Lecture 9 6

Hardness vs. randomness

¢« BMY pseudo-random generator:
— one generator fooling all poly-size bounds
— one-way-permutation is hard function
— implies hard function in NP n coNP
¢ New idea (Nisan-Wigderson):
— for each poly-size bound, one generator
— hard function allowed to be in
E = O,DTIME(2k)

April 27, 2004 CS151 Lecture 9

NW PRG
* NW: for fixed constant 8, G = {G,} with
seed length t =0O(log n) t = O(log m)
running time n¢ m¢
output length m =n3 m
error €<1/m
fooling size S =m

¢ Using this PRG we obtain BPP = P
—to fool size nk use G s
—running time O(nk + nck®)2t = poly(n)

April 27, 2004 CS151 Lecture 9

Comparison
BMY: V& >0 PRG Gd NW: PRG G
seed length t=m?3 t = O(log m)
running time t®m m¢
output length m m
error €<1/md(alld) €<1/m
fooling size s =me(all e) S=m
April 27, 2004 CS151 Lecture 9
NW PRG

* First attempt: build PRG assuming E
contains unapproximable functions

Definition: The function family
f={fo}. £,{0,1}" - {0,1}
is s(n)-unapproximable if for every family
of size s(n) circuits {C,}:
Pr[C,(X) = f,()] £ ¥ + 1/5(n).

April 27, 2004 CS151 Lecture 9

One bit

» Suppose f = {f, } is s(n)-unapproximable,
for s(n) = 220, and in E

* a “1-bit” generator family G = {G_}:
Gn(y) = yoflog n(y)

« |dea: if not a PRG then exists a predictor
that computes f,, , with better than %2 +
1/s(log n) agreement; contradiction.

April 27, 2004 CS151 Lecture 9

1

One bit

» Suppose f = {f, } is s(n)-unapproximable,
for s(n) = 2%, and in E

» a“1-bit” generator family G = {G_}:

Gn(Y) = Yofiog n(Y)

—seed lengtht =log n
—output lengthm =logn+1
—fooling size s = s(log n) = nd
— running time n¢
—error € = 1/s(log n) = 1/n®< 1/m

April 27, 2004 CS151 Lecture 9

(want nd)

Many bits

» Try outputting many evaluations of f:
G(y) = f(by()ef(bx(y))e...of(byn(Y))

« Seems that a predictor must evaluate
f(bi(y)) to predict i-th bit

» Does this work?

April 27, 2004 CS151 Lecture 9 13

Many bits

e Try outputting many evaluations of f:
G(y) = f(b(y))of(0,(y))e-..of(bn(¥))

« predictor might notice correlations without
having to compute f

 but, more subtle argument works for a
specific choice of b;...b,

April 27, 2004 CS151 Lecture 9 14

Nearly-Disjoint Subsets

Definition: S,,S,,...,S,, O {1...t}isan (h, a)
design if
—foralli, |S|=h
—foralli#], [S;n S|=a

&

April 27, 2004 CS151 Lecture 9 15

Nearly-Disjoint Subsets

Lemma: for every € >0 and m <ncanin
poly(n) time construct an

(h =log n, a = €log n) design
S..S,,....S,, O {1...t} with t = O(log n).

April 27, 2004 CS151 Lecture 9 16

Nearly-Disjoint Subsets

 Proof sketch:
— pick random (log n)-subset of {1...t}

—set t = O(log n) so that expected overlap with
a fixed S; is elog n/2

— probability overlap with S; is > elog n is at
most 1/n

— union bound: some subset has required small
overlap with all S; picked so far...

—find it by exhaustive search; repeat n times.

April 27, 2004 CS151 Lecture 9 17

The NW generator

« f 0 E s(n)-unapproximable, for s(n) = 25"

* S,,....S,0{1...t} (log n, a = dlog n/3)
design with t = O(log n)

Gn(y):f\og n(y|81)°flog n(y\Sz)u---of\og n(y\Sm)

f1ogs | 010100101111101010111001010 |

[]
seedy

April 27, 2004 CS151 Lecture 9 18

The NW generator

Theorem (Nisan-Wigderson): G={G,} is a
pseudo-random generator with:

—seed length t = O(log n)
— output length m = nd3
— running time n¢
—fooling sizeS =m
—error € =1/m

April 27, 2004 CS151 Lecture 9 19

The NW generator

* Proof:

— assume does not g-pass statistical test C =
{C,.} of size s:

[PrC(x) = 1] = Pr,[C(G, (y)) = 1]| > £
— can transform this distinguisher into a
predictor P of size s’ =s + O(m):
Pry[P(Gn(Y)1--i1) = GVl > Y2+ &/m

April 27, 2004 CS151 Lecture 9

The NW generator

Gn(y):flog n(y\sl)°flog n(y|Sz)° . --°flog n(y|Sm)

fog ' | 010100101111101010111001010 |

Y __—5s,
o
¢ Proof (continued):
PryP(Gn(Y)1--i1) = Ga(W)l > V2 + e/m
— fix bits outside of S; to preserve advantage:
Pry[P(G,(ay'B);---i1) = G(ay'B)] > Y2+ €/m

April 27, 2004 CS151 Lecture 9 21

The NW generator

Gn(y):flog n(y|Sl)°flog n(y\52)° - -°flog n(y\sm)
fiagn | 010100101111101010111001010 |

S 1
« Proof (continued): T
- Gn(dy‘B)i is exactly fIog n(yy)
—forj#i,asvaryy, G,(ay'B), varies over 22 values!
— hard-wire up to (m-1) tables of 22 values to provide
Gy By

April 27, 2004 CS151 Lecture 9

The NW generator

Gn(y):flog n(y\51)°flog n(y|Sz)° . --°flog n(y|Sm)

fIog n*

output
010100101111101010111001010 ‘ / Flogn(y)

* size s + O(m) + (m-1)2¢

P
- advantage e/m=1/m? Y~
>1/s(log n) = nd

hardwired tables

- contradiction

April 27, 2004 CS151 Lecture 9 23

Worst-case vs. Average-case

Theorem (NW): if E contains 29M-unapp-
roximable functions then BPP = P.

» How reasonable is unapproximability
assumption?

» Hope: obtain BPP = P from worst-case
complexity assumption

—try to fit into existing framework without new
notion of “unapproximability”

April 27, 2004 CS151 Lecture 9

Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan)

If E contains functions that require size
290 circuits, then E contains 29M —unapp-
roximable functions.

» Proof:
— main tool: error correcting code

April 27, 2004 CS151 Lecture 9 25

Error-correcting codes

 Error Correcting Code (ECC):

C:Zk o 3n
* message m [J Tk cm) %—4 R
 received word R
— C(m) with some positions corrupted
« if not too many errors, can decode: D(R) =m
» parameters of interest:

— rate: k/n
— distance:
d = min,,..,, AC(m), C(m)
April 27, 2004 CS151 Lecture 9 26

Distance and error correction

¢ Cis an ECC with distance d

« can uniquely decode from up to | d/2]
errors

April 27, 2004 CS151 Lecture 9 27

Distance and error correction

« can find short list of messages (one
correct) after closer to d errors!

Theorem (Johnson): a binary code with
distance (% - 8%)n has at most O(1/86?)
codewords in any ball of radius (%2 - d)n.

April 27, 2004 CS151 Lecture 9 28

Example: Reed-Solomon

alphabet X = F;: field with g elements

* message m [2k

¢ polynomial of degree at most k-1
Pm(X) = Zicg_ s MX

» codeword C(m) = (p,,,(X)), o Fq

* rate = k/q

April 27, 2004 CS151 Lecture 9 29

Example: Reed-Solomon

* Claim: distanced=q—-k + 1
—suppose A(C(m), C(m")) <q—-k+1
— then there exist polynomials p,,(x) and p,,(x)
that agree on more than k-1 points in F,

— polnomial p(x) = p,(X) - py(X) has more than
k-1 zeros

— but degree at most k-1...
— contradiction.

April 27, 2004 CS151 Lecture 9 30

Example: Reed-Muller

« Parameters: t (dimension), h (degree)
alphabet 2 = F, : field with g elements
» message m [XK

» multivariate polynomial of total degree at
most h:

Pm(X) = Zisg_ka MM,

{M} are all monomials of degree < h

April 27, 2004 CS151 Lecture 9

31

Example: Reed-Muller

* M;is monomial of total degree h
—e.0. X;2X,X,°
—need # monomials (h+t choose t) > k
« codeword C(m) = (p,()), ;g
* rate = k/qt
e Claim: distance d = (1 - h/q)qt
— proof: Schwartz-Zippel: polynomial of degree
h can have at most h/q fraction of zeros

April 27, 2004 CS151 Lecture 9 32

Codes and hardness

¢ Reed-Solomon (RS) and Reed-Muller
(RM) codes are efficiently encodable

« efficient unique decoding?
— yes (classic result)

« efficient list-decoding?
—yes (recent result: Sudan. On problem set.)

April 27, 2004 CS151 Lecture 9

33

Codes and Hardness

» Use for worst-case to average case:
truth table of f:{0,1}'°9% -, {0,1}
(worst-case hard)
m: [0[1]1]o]o]o[1]o]
truth table of f:{0,1}'°9" _, {0,1}
(average-case hard)

c(m):[0]1]1]o[o]o]1]o]oo]o]1]0]

April 27, 2004 CS151 Lecture 9 34

Codes and Hardness

« if n = poly(k) then
fOE impliesf OE

¢ Want to be able to prove:
if f' is s’-approximabile,
then f is computable by a
size s = poly(s’) circuit

April 27, 2004 CS151 Lecture 9

35

Codes and Hardness

 Key: circuit C that approximates ' implicitly
gives received word R

R:[0[0] 1[o[H]o[1]o[o]ofg]e]0]

cemyfo]1]1]o[o[o[1]o[o[o[o] 1[0

e Decoding procedure D “computes” f

exactly - Requires special
A notion of efficient

April 27, 2004 Cs151 Lecture 9 decodi ng 36

