

Hardness vs. randomness

- We have shown:

If one-way permutations exist then
$B P P \subset \cap_{\bar{\delta}>0} \operatorname{TIME}\left(2^{n^{\delta}}\right) \subsetneq E X P$

- simulation is better than brute force, but just barely
- stronger assumptions on difficulty of inverting OWF lead to better simulations...

April 27, 2004
CS151 Lecture 9 3

Outline

- The Nisan-Wigderson generator
- Error correcting codes from polynomials
- Turning worst-case hardness into average-case hardness

April 27, 2004

CS151 Lecture 9
2

Hardness vs. randomness

- We will show:

If \mathbf{E} requires exponential size circuits then $B P P=P$
by building a different generator from different assumptions.

$$
E=\cup_{k} D T I M E\left(2^{k n}\right)
$$

April 27, 2004
CS151 Lecture 9

Hardness vs. randomness

- To get $B P P=P$, would need $t=O(\log m)$
- BMY building block is one-waypermutation:

$$
\mathrm{f}:\{0,1\}^{\mathrm{t}} \rightarrow\{0,1\}^{\mathrm{t}}
$$

- required to fool circuits of size me (all e)
- with these settings a circuit has time to invert f by brute force!
can't get BPP $=\mathrm{P}$ with this type of PRG
April 27, 2004
CS151 Lecture 9
April 27, 2004
CS151 Lecture 9

Hardness vs. randomness

- BMY pseudo-random generator:
- one generator fooling all poly-size bounds
- one-way-permutation is hard function
- implies hard function in NP \cap coNP
- New idea (Nisan-Wigderson):
- for each poly-size bound, one generator
- hard function allowed to be in

$$
E=\cup_{k} D T I M E\left(2^{k n}\right)
$$

April 27, 2004
CS151 Lecture 9

Comparison

$B M Y: \forall \delta>0$ PRG G^{δ}
NW: PRG G
seed length $\quad \mathbf{t}=\mathrm{m}^{\delta}$
running time $t^{c} \mathrm{~m} \quad \mathrm{~m}^{c}$ output length m m
error $\quad \varepsilon<1 / \mathrm{m}^{\mathrm{d}}($ all d) $\quad \varepsilon<1 / \mathrm{m}$
fooling size $\quad \mathbf{s}=\mathrm{m}^{\mathrm{e}}(\mathrm{alle} \mathrm{e}) \quad \mathbf{S}=\mathrm{m}$

April 27, 2004
CS151 Lecture 9
$=0(\log \mathrm{~m})$
m^{c}
m

NW PRG

- First attempt: build PRG assuming E contains unapproximable functions
seed length $\quad \mathbf{t}=\mathrm{O}(\log \mathrm{n}) \quad \mathrm{t}=\mathrm{O}(\log \mathrm{m})$ running time n^{c} (
m^{C} output length
error $\quad \varepsilon<1 / \mathrm{m}$
fooling size $\quad \mathbf{s}=\mathrm{m}$
- Using this PRG we obtain BPP = P
- to fool size n^{k} use $G_{n k / \delta}$
- running time $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}+\mathrm{n}^{\mathrm{ck} \delta}\right) 2^{\mathrm{t}}=\operatorname{poly}(\mathrm{n})$

April 27, 2004
CS151 Lecture 9

One bit

- Suppose $f=\left\{f_{n}\right\}$ is $s(n)$-unapproximable, for $s(n)=2^{\Omega(n)}$, and in \mathbf{E}
- a "1-bit" generator family $G=\left\{G_{n}\right\}$:

$$
G_{n}(y)=y \circ f_{\log n}(y)
$$

- Idea: if not a PRG then exists a predictor that computes $\mathrm{f}_{\log n}$ with better than $1 / 2+$ $1 / \mathrm{s}(\log \mathrm{n})$ agreement; contradiction.

One bit

- Suppose $f=\left\{f_{n}\right\}$ is $s(n)$-unapproximable, for $s(n)=2^{\delta n}$, and in E
- a "1-bit" generator family $\mathrm{G}=\left\{\mathrm{G}_{\mathrm{n}}\right\}$:

$$
G_{n}(y)=y \circ f_{\log n}(y)
$$

- seed length $\mathbf{t}=\log \mathrm{n}$
- output length $\mathbf{m}=\log n+1$
(want $\mathrm{n}^{\text {§ }}$)
- fooling size $\mathbf{S} \approx s(\log n)=n^{\delta}$
- running time n^{C}
$-\operatorname{error} \boldsymbol{\varepsilon} \approx 1 / \mathrm{s}(\log n)=1 / n^{\delta}<1 / m$

Many bits

- Try outputting many evaluations of f :

$$
G(y)=f\left(b_{1}(y)\right) \circ f\left(b_{2}(y)\right) \ldots \circ f\left(b_{m}(y)\right)
$$

- Seems that a predictor must evaluate $\mathrm{f}\left(\mathrm{b}_{\mathrm{i}}(\mathrm{y})\right)$ to predict i -th bit
- Does this work?

Nearly-Disjoint Subsets

Definition: $S_{1}, S_{2}, \ldots, S_{m} \subset\{1 \ldots t\}$ is an (h, a) design if

- for all i, $\left|S_{i}\right|=h$
- for all $i \neq j,\left|S_{i} \cap S_{j}\right| \leq a$

Many bits

- Try outputting many evaluations of f :
$G(y)=f\left(b_{1}(y)\right) \circ f\left(b_{2}(y)\right) \circ \ldots f\left(b_{m}(y)\right)$
- predictor might notice correlations without having to compute f
- but, more subtle argument works for a specific choice of $b_{1} \ldots b_{m}$

April 27, 2004
CS151 Lecture 9
14

Nearly-Disjoint Subsets

Lemma: for every $\varepsilon>0$ and $m<n$ can in poly(n) time construct an
($h=\log n, a=\varepsilon \log n$) design
$S_{1}, S_{2}, \ldots, S_{m} \subset\{1 \ldots t\}$ with $t=O(\log n)$.

Nearly-Disjoint Subsets

- Proof sketch:
- pick random $(\log n)$-subset of $\{1 \ldots \mathrm{t}\}$
- set $t=O(\log n)$ so that expected overlap with a fixed S_{i} is $\varepsilon \log n / 2$
- probability overlap with S_{i} is $>\varepsilon \log n$ is at most 1/n
- union bound: some subset has required small overlap with all S_{i} picked so far...
- find it by exhaustive search; repeat n times.

[^0]CS151 Lecture 9
17

The NW generator

- $f \in E s(n)$-unapproximable, for $s(n)=2^{\delta n}$
- $S_{1}, \ldots, S_{m} \subset\{1 \ldots t\}(\log n, a=\delta \log n / 3)$ design with $t=O(\log n)$
$G_{n}(y)=f_{\log n}\left(y_{\mid S_{1}}\right) \circ f_{\log n}\left(y_{\mid S_{2}}\right)^{\circ} \ldots \circ f_{\log n}\left(y_{\mid S_{m}}\right)$
$f_{\log n}: 010100101111101010111001010$

April 27, 2004
CS151 Lecture 9
18

The NW generator

Theorem (Nisan-Wigderson): $\mathrm{G}=\left\{\mathrm{G}_{\mathrm{n}}\right\}$ is a pseudo-random generator with:

- seed length $\mathbf{t}=\mathrm{O}(\log n)$
- output length $\mathbf{m}=\mathrm{n}^{\delta / 3}$
- running time n^{c}
- fooling size $\mathbf{S}=m$
- error $\boldsymbol{\varepsilon}=1 / \mathrm{m}$

The NW generator
$G_{n}(y)=f_{\log n}\left(y_{\mid S_{1}}\right) \circ f_{\log n}\left(y_{\mid S_{2}}\right) \circ \ldots \circ f_{\log n}\left(y_{\mid S_{m}}\right)$
$f_{\operatorname{logn}}: 010100101111101010111001010$

- Proof (continued):

$$
\operatorname{Pr}_{y}\left[P\left(G_{n}(y)_{1} \cdots{ }_{i-1}\right)=G_{n}(y)_{i}\right]>1 / 2+\varepsilon / m
$$

- fix bits outside of S_{i} to preserve advantage:

$$
\operatorname{Pr}_{y^{\prime}}\left[P\left(G_{n}\left(\alpha y^{\prime} \beta\right)_{1} \cdots{ }_{i-1}\right)=G_{n}\left(\alpha y^{\prime} \beta\right)_{i}\right]>1 / 2+\varepsilon / m
$$

The NW generator

- Proof:
- assume does not ε-pass statistical test $\mathrm{C}=$ $\left\{\mathrm{C}_{\mathrm{m}}\right\}$ of size s:

$$
\left|\operatorname{Pr}_{x}[C(x)=1]-\operatorname{Pr}_{y}\left[C\left(G_{n}(y)\right)=1\right]\right|>\varepsilon
$$

- can transform this distinguisher into a predictor P of size $\mathrm{s}^{\prime}=\mathrm{s}+\mathrm{O}(\mathrm{m})$:

$$
\operatorname{Pr}_{y}\left[P\left(G_{n}(y)_{1} \cdots{ }_{i-1}\right)=G_{n}(y)_{i}\right]>1 / 2+\varepsilon / m
$$

The NW generator

- Proof (continued):
$-G_{n}\left(\alpha y^{\prime} \beta\right)_{i}$ is exactly $f_{\log n}\left(y^{\prime}\right)$
- for $\mathrm{j} \neq \mathrm{i}$, as vary $\mathrm{y}^{\prime}, \mathrm{G}_{\mathrm{n}}\left(\mathrm{Cy}^{\prime} \beta\right)_{\mathrm{i}}$ varies over 2^{a} values!
- hard-wire up to ($m-1$) tables of $2^{\text {a }}$ values to provide $\mathrm{G}_{\mathrm{n}}\left(\alpha y^{\prime} \beta\right)_{1} \cdots \mathrm{i}-1$

Worst-case vs. Average-case

Theorem (NW): if E contains $2^{\Omega(n)}$-unapproximable functions then $\mathbf{B P P}=\mathbf{P}$.

- How reasonable is unapproximability assumption?
- Hope: obtain BPP = P from worst-case complexity assumption
- try to fit into existing framework without new notion of "unapproximability"

April 27, 2004
CS151 Lecture 9

Worst-case vs. Average-case

Theorem (Impagliazzo-Wigderson, Sudan-Trevisan-Vadhan) If \mathbf{E} contains functions that require size $2^{\Omega(n)}$ circuits, then E contains $2^{\Omega(n)}$-unapproximable functions.

- Proof:
- main tool: error correcting code

Distance and error correction

- C is an ECC with distance d
- can uniquely decode from up to $\lfloor\mathrm{d} / 2\rfloor$ errors

Error-correcting codes

- Error Correcting Code (ECC):
- message $m \in \Sigma^{k}$
- received word R

- C(m) with some positions corrupted
- if not too many errors, can decode: $D(R)=m$
- parameters of interest:
- rate: k/n
- distance:

$$
\mathrm{d}=\min _{\mathrm{m} \neq \mathrm{m}^{\prime}} \Delta\left(\mathrm{C}(\mathrm{~m}), \mathrm{C}\left(\mathrm{~m}^{\prime}\right)\right)
$$

April 27, 2004 CS151 Lecture 9

26

Distance and error correction

- can find short list of messages (one correct) after closer to d errors!

Theorem (Johnson): a binary code with distance $\left(1 / 2-\delta^{2}\right) n$ has at most $O\left(1 / \delta^{2}\right)$ codewords in any ball of radius $(1 / 2-\delta) n$.

Example: Reed-Solomon

- alphabet $\Sigma=F_{q}$: field with q elements
- message $m \in \Sigma^{k}$
- polynomial of degree at most k-1

$$
p_{m}(x)=\Sigma_{i=0 \ldots k-1} m_{i} x^{i}
$$

- codeword $C(m)=\left(p_{m}(x)\right)_{x \in F_{q}}$
- rate $=\mathrm{k} / \mathrm{q}$

Example: Reed-Solomon

- Claim: distance $\mathrm{d}=\mathrm{q}-\mathrm{k}+1$
- suppose $\Delta\left(C(m), C\left(m^{\prime}\right)\right)<q-k+1$
- then there exist polynomials $p_{m}(x)$ and $p_{m}(x)$
that agree on more than $k-1$ points in F_{q}
- polnomial $p(x)=p_{m}(x)-p_{m^{\prime}}(x)$ has more than k-1 zeros
- but degree at most $k-1 \ldots$
- contradiction.

Example: Reed-Muller

- Parameters: t (dimension), h (degree)
- alphabet $\Sigma=\mathbf{F}_{\mathrm{q}}$: field with q elements
- message $m \in \Sigma^{k}$
- multivariate polynomial of total degree at most h:

$$
p_{m}(x)=\Sigma_{i=0 \ldots k-1} m_{i} M_{i}
$$

$\left\{M_{i}\right\}$ are all monomials of degree $\leq h$
April 27, 2004
CS151 Lecture 9 31

Example: Reed-Muller

- M_{i} is monomial of total degree h
- e.g. $x_{1}{ }^{2} x_{2} x_{4}{ }^{3}$
- need \# monomials ($\mathrm{h}+\mathrm{t}$ choose t) $>\mathrm{k}$
- codeword $C(m)=\left(p_{m}(x)\right)_{x \in\left(F_{q}\right)^{t}}$
- rate $=$ k/q
- Claim: distance d=(1-h/q)qt
- proof: Schwartz-Zippel: polynomial of degree h can have at most h / q fraction of zeros

Codes and Hardness

- Use for worst-case to average case:
truth table of $\mathrm{f}:\{0,1\}^{\log \mathrm{k}} \rightarrow\{0,1\}$
(worst-case hard)

$\mathrm{m}:$| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

truth table of $f^{\prime}:\{0,1\}^{\log n} \rightarrow\{0,1\}$
(average-case hard)

$C(m):$| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

April 27, 2004
CS151 Lecture 9
34

Codes and Hardness

- if $\mathrm{n}=\operatorname{poly}(\mathrm{k})$ then

$$
f \in E \text { implies } f^{\prime} \in E
$$

- Want to be able to prove:
if f^{\prime} is s^{\prime}-approximable, then f is computable by a size $s=\operatorname{poly}\left(s^{\prime}\right)$ circuit

April 27, 2004
CS151 Lecture 9 35

Codes and Hardness

- Key: circuit C that approximates f' implicitly gives received word R

R: | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

- Decoding procedure D "computes" f exactly

- Requires special notion of efficient decoding ${ }^{36}$

[^0]: April 27, 2004

