
1

CS151
Complexity Theory

Lecture 8
April 22, 2004

April 22, 2004 CS151 Lecture 8 2

Derandomization

• Goal: try to simulate BPP is
subexponential time (or better)

• use Pseudo-Random Generator (PRG):

• often: PRG “good” if it passes (ad-hoc)
statistical tests

���� ���������	
��

���
�� � �
��

April 22, 2004 CS151 Lecture 8 3

Derandomization

• ad-hoc tests not good enough to prove
BPP has non-trivial simulations

• Our requirements:
– G is efficiently computable

– “stretches” t bits into m bits

– “fools” small circuits: for all circuits C of size at
most s:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| �
�

April 22, 2004 CS151 Lecture 8 4

Simulating BPP using PRGs

• Recall: L ∈ BPP implies exists p.p.t.TM M
x ∈ L � Pry[M(x,y) accepts] � 2/3
x ∉ L � Pry[M(x,y) rejects] � 2/3

• given an input x:
– convert M into circuit C(x, y)

– simplification: pad y so that |C| = |y| = m
• hardwire input x to get circuit Cx

Pry[Cx(y) = 1] � 2/3 (“yes”)
Pry[Cx(y) = 1] � 1/3 (“no”)

April 22, 2004 CS151 Lecture 8 5

Simulating BPP using PRGs

• Use a PRG G with
– output length m
– seed length t � m

– error
�

< 1/6
– fooling size s = m

• Compute Prz[Cx(G(z)) = 1] exactly
– evaluate Cx(G(z)) on every seed z ∈ {0,1}t

• running time (O(m)+(time for G))2t

April 22, 2004 CS151 Lecture 8 6

Simulating BPP using PRGs

• knowing Prz[Cx(G(z)) = 1], can distinguish
between two cases:

� ��� ��� ��� �
������

�

� ��� ��� ��� �
�����

�

2

April 22, 2004 CS151 Lecture 8 7

Blum-Micali-Yao PRG

• Initial goal: for all 1 > � > 0, we will build a
family of PRGs {Gm} with:
output length m fooling size s = m
seed length t = m� running time mc

error
�

< 1/6

• implies: BPP ⊂ ∩
�>0 TIME(2n�) � EXP

• Why? simulation runs in time
O(m+mc)(2m�) = O(2m2�

) = O(2n2k�
)

April 22, 2004 CS151 Lecture 8 8

Blum-Micali-Yao PRG

• PRGs of this type imply existence of one-way-
functions
– we’ll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function
family f = {fn}, fn:{0,1}n → {0,1}n

– fn computable in poly(n) time
– for every family of poly-size circuits {Cn}

Prx[Cn(fn(x)) ∈fn-1(fn(x))] � �(n)
– �(n) = o(nc) for all c

April 22, 2004 CS151 Lecture 8 9

Blum-Micali-Yao PRG

• believe one-way functions exist
– e.g. integer multiplication, discrete log, RSA

(w/ minor modifications)

Definition: One Way Permutation: OWF in
which fn is 1-1
– can simplify “Prx[Cn(fn(x)) ∈fn-1(fn(x))] � �(n)” to

Pry[Cn(y) = fn-1(y)] � �(n)

April 22, 2004 CS151 Lecture 8 10

First attempt

• attempt at PRG from OWF f:
– t = m�

– Y0 ∈ {0,1}t

– yi = ft(yi-1)
– G(y0) = yk-1yk-2yk-3…y0

– k = m/t

• computable in time at most
ktc < mc = mc

April 22, 2004 CS151 Lecture 8 11

First attempt

• output is “unpredictable”:
– no poly-size circuit C can output yi-1 given

yk-1yk-2yk-3…yi with non-negl. success prob.

– if C could, then given yi can compute
yk-1, yk-2, …, yi+2, yi+1 and feed to C

– result is poly-size circuit to compute

yi-1 = ft-1(yi) from yi

– note: we’re using that ft is 1-1

April 22, 2004 CS151 Lecture 8 12

First attempt

attempt:
• Y0 ∈ {0,1}t

• yi = ft(yi-1)

• G(y0) =

yk-1yk-2yk-3…y0

������������

����������

�����

������������

��
������

������

��
����

��

same distribution!

3

April 22, 2004 CS151 Lecture 8 13

First attempt

• one problem:
– hard to compute yi-1 from yi

– but might be easy to compute single bit (or
several bits) of yi-1 from yi

– could use to build small circuit C that
distinguishes G’s output from uniform
distribution on {0,1}m

April 22, 2004 CS151 Lecture 8 14

First attempt

• second problem

– we don’t know if “unpredictability” given a
prefix is sufficient to meet fooling requirement:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| �
�

April 22, 2004 CS151 Lecture 8 15

Hard bits

• If {fn} is one-way permutation we know:
– no poly-size circuit can compute fn-1(y) from y with

non-negligible success probability
Pry[Cn(y) = fn-1(y)] � �’(n)

• We want to identify a single bit position j for
which:
– no poly-size circuit can compute (fn-1(x))j from x with

non-negligible advantage over a coin flip
Pry[Cn(y) = (fn-1(y))j] � ½ + �(n)

April 22, 2004 CS151 Lecture 8 16

Hard bits

• For some specific functions f we know of
such a bit position j

• More general:

function hn:{0,1}n → {0,1}
rather than just a bit position j.

April 22, 2004 CS151 Lecture 8 17

Hard bits

Definition: hard bit for g = {gn} is family h = {hn},
hn:{0,1}n → {0,1} such that if circuit family {Cn} of
size s(n) achieves:

Prx[Cn(x) = hn(gn(x))] � ½ + �(n)

then there is a circuit family {C’n} of size s’(n)
that achieves:

Prx[C’n(x) = gn(x)] � �’(n)

with:
– �’(n) = (�(n)/n)O(1)

– s’(n) = (s(n)n/�(n))O(1)

April 22, 2004 CS151 Lecture 8 18

Goldreich-Levin

• To get a generic hard bit, first need to
modify our one-way permutation

• Define f’n :{0,1}n x {0,1}n →{0,1}2n as:

f’n(x,y) = (fn(x), y)

4

April 22, 2004 CS151 Lecture 8 19

Goldreich-Levin

• Two observations:
– f’ is a permutation if f is

– if circuit Cn achieves
Prx,y[Cn(x,y) = f’n-1(x,y)] � �(n)

then for some y*

Prx[Cn(x,y*)=f’n-1(x,y*)=(fn-1(x), y*)] � �(n)
and so f’ is a one-way permutation if f is.

f’n(x,y) = (fn(x), y)

April 22, 2004 CS151 Lecture 8 20

Goldreich-Levin

• The Goldreich-Levin function:

GL2n : {0,1}n x {0,1}n → {0,1}
is defined by:

GL2n (x,y) = ⊕i:yi = 1xi

– parity of subset of bits of x selected by 1’s of y
– inner-product of n-vectors x and y in GF(2)

Theorem (G-L): for every function f, GL is a
hard bit for f’. (proof: problem set)

April 22, 2004 CS151 Lecture 8 21

Distinguishers and predictors

• Distribution D on {0,1}n

• D � -passes statistical tests of size s if for
all circuits of size s:

|Pry←Un
[C(y) = 1] – Pry ←D[C(y) = 1]| �

�

– circuit violating this is sometimes called an
efficient “distinguisher”

April 22, 2004 CS151 Lecture 8 22

Distinguishers and predictors

• D � -passes prediction tests of size s if for
all circuits of size s:

Pry←D[C(y1,2,…,i-1) = yi] � ½ +
�

– circuit violating this is sometimes called an
efficient “predictor”

• predictor seems stronger
• Yao showed essentially the same!

– important result and proof (“hybrid argument”)

April 22, 2004 CS151 Lecture 8 23

Distinguishers and predictors

Theorem (Yao): if a distribution D on {0,1}n

(�/n)-passes all prediction tests of size s,
then it �-passes all statistical tests of size
s’ = s – O(n).

April 22, 2004 CS151 Lecture 8 24

Distinguishers and predictors

• Proof:
– idea: proof by contradiction
– given a size s’ distinguisher C:

|Pry←Un
[C(y) = 1] – Pry ←D[C(y) = 1]| > �

– produce size s predictor P:

Pry←D[P(y1,2,…,i-1) = yi] > ½ + �/n

– work with distributions that are “hybrids” of the
uniform distribution Un and D

5

April 22, 2004 CS151 Lecture 8 25

Distinguishers and predictors

– given a size s’ distinguisher C:

|Pry←Un
[C(y) = 1] – Pry ←D[C(y) = 1]| > �

– define n+1 hybrid distributions

– hybrid distribution Di:
• sample b = b1b2…bn from D
• sample r = r1r2…rn from Un

• output:

b1b2…bi ri+1ri+2…rn

April 22, 2004 CS151 Lecture 8 26

Distinguishers and predictors

• Hybrid distributions:

�� �!��

�� ���

�
���

�
�

"
"
"�

"
"
"�

"
"
"�

"
"
"�

April 22, 2004 CS151 Lecture 8 27

Distinguishers and predictors

– Define: pi = Pry←Di
[C(y) = 1]

– Note: p0=Pry←Un
[C(y)=1]; pn=Pry←D[C(y)=1]

– by assumption: � < |pn – p0|

– triangle inequality: |pn – p0| � �1 � i � n|pi – pi-1|

– there must be some i for which
|pi – pi-1| > �/n

– WLOG assume pi – pi-1 > �/n
• can invert output of C if necessary

April 22, 2004 CS151 Lecture 8 28

Distinguishers and predictors

– define distribution Di’ to be Di with i-th bit
flipped

– pi’ = Pry←Di’
[C(y) = 1]

– notice:
Di-1 = (Di + Di’)/2 pi-1 = (pi + pi’)/2

�
���

�
�

�
��

April 22, 2004 CS151 Lecture 8 29

Distinguishers and predictors

• randomized predictor P’ for ith bit:
– input: u = y1y2…yi-1

– flip a coin: d ∈{0, 1}

– w = wi+1wi+2…wn ← Un-i

– evaluate C(udw)

– if 1, output d; if 0, output ¬d

Claim:

Pry ← D,d,w← Un-i
[P’(y1…i-1) = yi] > ½ + �/n.

April 22, 2004 CS151 Lecture 8 30

Distinguishers and predictors

• P’ is randomized procedure
• there must be some fixing of its random

bits d, w that preserves the success prob.
• final predictor P has d* and w* hardwired:

#

$%����������
%���¬ �%��

�&

'&

(
	(�
��
��	�)�

Size is

s’ + O(n) = s

as promised

6

April 22, 2004 CS151 Lecture 8 31

Distinguishers and predictors

• Proof of claim:
Pry ← D,d,w← Un-i

[P’(y1…i-1) = yi] =

Pr[yi = d | C(u,d,w) = 1]Pr[C(u,d,w) = 1]

+ Pr[yi = ¬d | C(u,d,w) = 0]Pr[C(u,d,w) = 0]

= Pr[yi = d | C(u,d,w) = 1](pi-1)

+ Pr[yi = ¬d | C(u,d,w) = 0](1 - pi-1)

April 22, 2004 CS151 Lecture 8 32

Distinguishers and predictors

– Observe:
Pr[yi = d | C(u,d,w) = 1]
= Pr[C(u,d,w) = 1 | yi = d]Pr[yi=d] / Pr[C(u,d,w) = 1]
= pi/(2pi-1)

Pr[yi = ¬d | C(u,d,w) = 0]
= Pr[C(u,d,w) = 0 | yi= ¬d]Pr[yi=¬d] / Pr[C(u,d,w) = 0]
= (1 – pi’) / 2(1 - pi-1)

April 22, 2004 CS151 Lecture 8 33

Distinguishers and predictors

• Success probability:
Pr[yi=d|C(u,d,w)=1](pi-1) + Pr[yi=¬d|C(u,d,w)=0](1-pi-1)

• We know:
– Pr[yi = d | C(u,d,w) = 1] = pi/(2pi-1)
– Pr[yi = ¬d | C(u,d,w) = 0] = (1 - pi’)/2(1 - pi-1)
– pi-1 = (pi + pi’)/2
– pi – pi-1 > �/n

• Conclude:
Pr[P’(y1…i-1) = yi] = ½ + (pi - pi’)/2 = ½ + pi – pi-1

> ½ + �/n.

April 22, 2004 CS151 Lecture 8 34

The BMY Generator

• Recall goal: for all 1 > � > 0, family of
PRGs {Gm} with
output length m fooling size s = m
seed length t = m� running time mc

error
�

< 1/6

• If one way permutations exist then WLOG
there is an f = {fn} with a hard bit h = {hn}

April 22, 2004 CS151 Lecture 8 35

The BMY Generator

• Generator G� = {G�
m}:

– t = m�

– Y0 ∈ {0,1}t

– yi = ft(yi-1)
– bi = ht(yi)

– G�(y0) = bm-1bm-2bm-3…b0

April 22, 2004 CS151 Lecture 8 36

The BMY Generator

Theorem (BMY): for every � > 0, and all d,
e, G� is a PRG with

error �
< 1/md

fooling size s = me

running time mc

• Note: stronger than we needed
– sufficient to have

�
< 1/6; s = m

7

April 22, 2004 CS151 Lecture 8 37

The BMY Generator

• Proof:
– computable in time at most

mtc < mc+1

– assume G� does not (1/md)-pass statistical
test C = {Cm} of size me:

|Pry←U[C(y) = 1] – Prz←D[C(z) = 1]| >1/md

���	%��	�
* �+
*
$,�

-�� �$*.��/ � ∈ +�0�,�.���
 �����
���.���
 �1���
�

-
*
$����� ��$���$���$��2��

April 22, 2004 CS151 Lecture 8 38

The BMY Generator

– can transform this distinguisher into a
predictor P of size me + O(m):

Pry[P(bm-1…bm-i) = bm-i-1] > ½ + 1/md-1

���	%��	�
* �+
*
$,�

-�� �$*.��/ � ∈ +�0�,�.���
 �����
���.���
 �1���
�

-
*
$����� ��$���$���$��2��

April 22, 2004 CS151 Lecture 8 39

The BMY Generator

– a procedure to compute ht(ft-1(y))
• set ym-i = y; bm-i = ht(ym-i)
• compute yj, bj for j = m-i+1, m-i+2…, m-1 as above
• evaluate P(bm-1bm-2…bm-i)
• f a permutation implies bm-1bm-2…bm-i distributed as

(prefix of) output of generator:
Pry[P(bm-1bm-2…bm-i) = bm-i-1] > ½ + 1/md-1

���	%��	�
* �+
*
$,�

-�� �$*.��/ � ∈ +�0�,�.���
 �����
���.���
 �1���
�

-
*
$����� ��$���$���$��2��

April 22, 2004 CS151 Lecture 8 40

The BMY Generator

Pry[P(bm-1bm-2…bm-i) = bm-i-1] > ½ + 1/md-1

– What is bm-i-1?
bm-i-1 = ht(ym-i-1) = ht(ft-1(ym-i)) = ht(ft-1(y))

– We have described a family of polynomial-size
circuits that computes ht(ft-1(y)) from y with success
greater than ½ + 1/poly(m)

– Contradiction.

���	%��	�
* �+
*
$,�

-�� �$*.��/ � ∈ +�0�,�.���
 �����
���.���
 �1���
�

-
*
$����� ��$���$���$��2��

April 22, 2004 CS151 Lecture 8 41

The BMY Generator

������������

����������

�����

������������

��
������

������

��
����

��

������������

������������

same
distribution

