CS151
Complexity Theory
Lecture 8
April 22, 2004

Derandomization

- Goal: try to simulate BPP is subexponential time (or better)
- use Pseudo-Random Generator (PRG):

- often: PRG "good" if it passes (ad-hoc) statistical tests

April 22, 2004 CS151 Lecture 8 2

Simulating BPP using PRGs

- Recall: $L \in$ BPP implies exists p.p.t.TM M

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 2 / 3
$$

$$
x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }] \geq 2 / 3
$$

- given an input x :
- convert M into circuit C(x, y)
- simplification: pad y so that $|C|=|y|=m$
- hardwire input x to get circuit C_{x}

$$
\begin{array}{ll}
\operatorname{Pr}_{y}\left[\mathrm{C}_{x}(y)=1\right] \geq 2 / 3 & \text { ("yes") } \\
\operatorname{Pr}_{y}\left[\mathrm{C}_{x}(y)=1\right] \leq 1 / 3 & \text { ("no") }
\end{array}
$$

April 22, 2004
CS151 Lecture 8

Simulating BPP using PRGs

- knowing $\operatorname{Pr}_{z}\left[\mathrm{C}_{x}(\mathrm{G}(\mathrm{z}))=1\right]$, can distinguish
- output length m
- seed length \mathbf{t} « m
- error $\boldsymbol{\varepsilon}<1 / 6$
- fooling size $\mathbf{S}=m$
- Compute $\operatorname{Pr}_{z}\left[C_{x}(G(z))=1\right]$ exactly
- evaluate $C_{x}(G(z))$ on every seed $z \in\{0,1\}^{t}$
- running time $(\mathrm{O}(\mathrm{m})+($ time for G$)) 2^{\mathrm{t}}$
between two cases:

"no":

April 22, 2004
CS151 Lecture 8

Blum-Micali-Yao PRG

- Initial goal: for all $1>\delta>0$, we will build a family of PRGs $\left\{G_{m}\right\}$ with:

$$
\begin{array}{ll}
\text { output length } \mathbf{m} & \text { fooling size } \mathbf{S}=\mathrm{m} \\
\text { seed length } \mathbf{t}=\mathrm{m}^{\delta} & \text { running time } \mathrm{m}^{\mathrm{c}}
\end{array}
$$

$$
\text { error } \boldsymbol{\varepsilon}<1 / 6
$$

- implies: BPP $\subset \cap_{\delta>0} \operatorname{TIME}\left(2^{n \bar{\delta}}\right) \subsetneq E X P$
- Why? simulation runs in time

$$
\mathrm{O}\left(\mathrm{~m}+\mathrm{m}^{\mathrm{c}}\right)\left(2^{\mathrm{m}^{\delta}}\right)=\mathrm{O}\left(2^{\mathrm{m}^{2 \delta}}\right)=\mathrm{O}\left(2^{n^{2 k \delta}}\right)
$$

April 22, 2004
CS151 Lecture 8

Blum-Micali-Yao PRG

- PRGs of this type imply existence of one-wayfunctions
- we'll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function family $f=\left\{f_{n}\right\}, f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
$-f_{n}$ computable in poly(n) time

- for every family of poly-size circuits $\left\{\mathrm{C}_{n}\right\}$
$\operatorname{Pr}_{x}\left[\mathrm{C}_{\mathrm{n}}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right) \in \mathrm{f}_{\mathrm{n}}{ }^{-1}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)\right] \leq \varepsilon(\mathrm{n})$
$-\varepsilon(n)=o\left(n^{c}\right)$ for all c

Blum-Micali-Yao PRG

- believe one-way functions exist
- e.g. integer multiplication, discrete log, RSA (w/ minor modifications)

Definition: One Way Permutation: OWF in which f_{n} is 1-1

- can simplify " $\operatorname{Pr}_{x}\left[\mathrm{C}_{n}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right) \in \mathrm{f}_{\mathrm{n}}{ }^{-1}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right)\right] \leq \varepsilon(\mathrm{n})$ " to $\operatorname{Pr}_{y}\left[C_{n}(y)=f_{n}^{-1}(y)\right] \leq \varepsilon(n)$

April 22, 2004
CS151 Lecture 8

First attempt

- attempt at PRG from OWF f:
$-\mathrm{t}=\mathrm{m}^{\delta}$
$-Y_{0} \in\{0,1\}^{t}$
$-y_{i}=f_{t}\left(y_{i-1}\right)$
$-G\left(y_{0}\right)=y_{k-1} y_{k-2} y_{k-3} \cdots y_{0}$
$-k=m / t$
- computable in time at most

$$
\mathrm{kt}^{\mathrm{c}}<\mathrm{m}^{\mathrm{c}}=\mathrm{m}^{\mathrm{c}}
$$

April 22, 2004
CS151 Lecture 8
10

First attempt

- output is "unpredictable":
- no poly-size circuit C can output y_{i-1} given $y_{k-1} y_{k-2} y_{k-3} \ldots y_{i}$ with non-negl. success prob.
- if C could, then given y_{i} can compute
$y_{k-1}, y_{k-2}, \ldots, y_{i+2}, y_{i+1}$ and feed to C
- result is poly-size circuit to compute
$y_{i-1}=f_{t}^{-1}\left(y_{i}\right)$ from y_{i}
- note: we're using that f_{t} is 1-1

First attempt
attempt:

- $Y_{0} \in\{0,1\}^{t}$
- $y_{i}=f_{t}\left(y_{i-1}\right)$

- $\mathrm{G}\left(\mathrm{y}_{0}\right)=$
$y_{k-1} y_{k-2} y_{k-3} \cdots y_{0}$

April 22, 2004
CS151 Lecture 8
12

First attempt

- one problem:
- hard to compute y_{i-1} from y_{i}
- but might be easy to compute single bit (or several bits) of y_{i-1} from y_{i}
- could use to build small circuit C that distinguishes G's output from uniform distribution on $\{0,1\}^{m}$

First attempt

- second problem
- we don't know if "unpredictability" given a prefix is sufficient to meet fooling requirement:

$$
\left|\operatorname{Pr}_{y}[\mathrm{C}(\mathrm{y})=1]-\operatorname{Pr}_{\mathrm{z}}[\mathrm{C}(\mathrm{G}(\mathrm{z}))=1]\right| \leq \boldsymbol{\varepsilon}
$$

Hard bits

Definition: hard bit for $g=\left\{g_{n}\right\}$ is family $h=\left\{h_{n}\right\}$, $h_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ such that if circuit family $\left\{\mathrm{C}_{n}^{n}\right\}$ of size $s(n)$ achieves:

$$
\operatorname{Pr}_{x}\left[C_{n}(x)=h_{n}\left(g_{n}(x)\right)\right] \geq 1 / 2+\varepsilon(n)
$$

then there is a circuit family $\left\{\mathrm{C}_{\mathrm{n}}^{\prime}\right\}$ of size $\mathrm{s}^{\prime}(\mathrm{n})$ that achieves:

$$
\operatorname{Pr}_{x}\left[C_{n}^{\prime}(x)=g_{n}(x)\right] \geq \varepsilon^{\prime}(n)
$$

with:
$-\varepsilon^{\prime}(\mathrm{n})=(\varepsilon(\mathrm{n}) / \mathrm{n})^{\circ(1)}$
$-\mathrm{s}^{\prime}(\mathrm{n})=(\mathrm{s}(\mathrm{n}) \mathrm{n} / \varepsilon(\mathrm{n}))^{0(1)}$
April 22, 2004
CS151 Lecture 8

Goldreich-Levin

- To get a generic hard bit, first need to modify our one-way permutation
- Define $f_{n}^{\prime}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ as:

$$
f_{n}^{\prime}(x, y)=\left(f_{n}(x), y\right)
$$

April 22, 2004

Distinguishers and predictors

- Distribution D on $\{0,1\}^{\text {n }}$
- D $\boldsymbol{\varepsilon}$-passes statistical tests of size s if for all circuits of size s:

$$
\left|\operatorname{Pr}_{y \leftarrow u_{n}}[C(y)=1]-\operatorname{Pr}_{y \leftarrow \square}[C(y)=1]\right| \leq \varepsilon
$$

- circuit violating this is sometimes called an efficient "distinguisher"

Distinguishers and predictors

Theorem (Yao): if a distribution D on $\{0,1\}^{n}$ (ε / n)-passes all prediction tests of size s, then it ε-passes all statistical tests of size $\mathrm{s}^{\prime}=\mathrm{s}-\mathrm{O}(\mathrm{n})$.

Goldreich-Levin

- The Goldreich-Levin function:

$$
\mathrm{GL}_{2 n}:\{0,1\}^{\mathrm{n}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}
$$

is defined by:

$$
\mathrm{GL}_{2 n}(\mathrm{x}, \mathrm{y})=\oplus_{\mathrm{i}: \mathrm{y}_{\mathrm{i}}=1} \mathrm{x}_{\mathrm{i}}
$$

- parity of subset of bits of x selected by 1 's of y - inner-product of n-vectors x and y in GF(2)

Theorem (G-L): for every function $f, G L$ is a hard bit for f'. (proof: problem set)

April 22, 2004
CS151 Lecture 8
20

Distinguishers and predictors

- D $\boldsymbol{\varepsilon}$-passes prediction tests of size s if for all circuits of size s:

$$
\operatorname{Pr}_{\mathrm{y} \leftarrow \mathrm{D}}\left[\mathrm{C}\left(\mathrm{y}_{1,2, \ldots, \mathrm{i}-1}\right)=\mathrm{y}_{\mathrm{i}}\right] \leq 1 / 2+\boldsymbol{\varepsilon}
$$

- circuit violating this is sometimes called an efficient "predictor"
- predictor seems stronger
- Yao showed essentially the same!
- important result and proof ("hybrid argument")

April 22, 2004
CS151 Lecture 8
22

Distinguishers and predictors

- Proof:
- idea: proof by contradiction
- given a size s^{\prime} distinguisher C :

$$
\left|\operatorname{Pr}_{y \leftarrow u_{n}}[C(y)=1]-\operatorname{Pr}_{y \leftarrow n}[C(y)=1]\right|>\varepsilon
$$

- produce size s predictor P :

$$
\operatorname{Pr}_{y \in-D}\left[P\left(y_{1,2, \ldots, i-1}\right)=y_{i}\right]>1 / 2+\varepsilon / n
$$

- work with distributions that are "hybrids" of the uniform distribution U_{n} and D

Distinguishers and predictors

- given a size s' distinguisher C:
$\left|\operatorname{Pr}_{\mathrm{y} \leftarrow \mathrm{U}_{\mathrm{n}}}[\mathrm{C}(\mathrm{y})=1]-\operatorname{Pr}_{\mathrm{y} \leftarrow \mathrm{D}}[\mathrm{C}(\mathrm{y})=1]\right|>\varepsilon$
- define $\mathrm{n}+1$ hybrid distributions
- hybrid distribution D_{i} :
- sample $b=b_{1} b_{2} \ldots b_{n}$ from D
- sample $r=r_{1} r_{2} \ldots r_{n}$ from U_{n}
- output:

$$
b_{1} b_{2} \ldots b_{i} r_{i+1} r_{i+2} \ldots r_{n}
$$

Distinguishers and predictors

- Define: $p_{i}=\operatorname{Pr}_{y \leftarrow D_{i}}[C(y)=1]$
- Note: $p_{0}=\operatorname{Pr}_{y \leftarrow u_{n}}[C(y)=1] ; \quad p_{n}=\operatorname{Pr}_{y \leftarrow D}[C(y)=1]$
- by assumption: $\quad \varepsilon<\left|p_{n}-p_{0}\right|$
- triangle inequality: $\left|p_{n}-p_{0}\right| \leq \Sigma_{1 \leq i \leq n}\left|p_{i}-p_{i-1}\right|$
- there must be some i for which

$$
\left|p_{i}-p_{i-1}\right|>\varepsilon / n
$$

-WLOG assume $p_{i}-p_{i-1}>\varepsilon / n$

- can invert output of C if necessary

Distinguishers and predictors

- Hybrid distributions:

Distinguishers and predictors

- define distribution D_{i} ' to be D_{i} with i-th bit flipped
$-p_{i}^{\prime}=\operatorname{Pr}_{y \leftarrow D_{i}}[C(y)=1]$

- notice:

$$
D_{i-1}=\left(D_{i}+D_{i}^{\prime}\right) / 2 \quad p_{i-1}=\left(p_{i}+p_{i}^{\prime}\right) / 2
$$

April 22, 2004
CS151 Lecture 8
28

Distinguishers and predictors

- P^{\prime} is randomized procedure
- there must be some fixing of its random bits d , w that preserves the success prob.
- final predictor P has d^{*} and w^{*} hardwired:

Distinguishers and predictors

- Proof of claim:
$\operatorname{Pr}_{y \leftarrow D, d, w \leftarrow u_{n-i}}\left[P^{\prime}\left(y_{1} \cdots i-1\right)=y_{i}\right]=$
$\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right] \operatorname{Pr}[C(u, d, w)=1]$
$+\operatorname{Pr}\left[y_{i}=\neg d \mid C(u, d, w)=0\right] \operatorname{Pr}[C(u, d, w)=0]$
$=\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right]\left(p_{i-1}\right)$
$+\operatorname{Pr}\left[\mathrm{y}_{\mathrm{i}}=\neg \mathrm{d} \mid \mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=0\right]\left(1-\mathrm{p}_{\mathrm{i}-1}\right)$

Distinguishers and predictors

- Success probability:
$\operatorname{Pr}\left[\mathrm{y}_{\mathrm{i}}=\mathrm{d} \mid \mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=1\right]\left(\mathrm{p}_{\mathrm{i}-1}\right)+\operatorname{Pr}\left[\mathrm{y}_{\mathrm{i}}=\neg \mathrm{d} \mid \mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=0\right]\left(1-\mathrm{p}_{\mathrm{i}-1}\right)$
- We know:
$-\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right]=p_{i} /\left(2 p_{i-1}\right)$
$-\operatorname{Pr}\left[y_{i}=\neg d \mid C(u, d, w)=0\right]=\left(1-p_{i}{ }^{\prime}\right) / 2\left(1-p_{i-1}\right)$
$-p_{i-1}=\left(p_{i}+p_{i}{ }^{\prime}\right) / 2$
$-p_{i}-p_{i-1}>\varepsilon / n$
- Conclude:
$\operatorname{Pr}\left[P^{\prime}\left(y_{1} \cdots{ }_{i-1}\right)=y_{i}\right]=1 / 2+\left(p_{i}-p_{i}^{\prime}\right) / 2=1 / 2+p_{i}-p_{i-1}$ $>1 / 2+\varepsilon / n$.

The BMY Generator

- Generator $\mathrm{G}^{\delta}=\left\{\mathrm{G}^{\delta}{ }_{\mathrm{m}}\right\}$:
$-\mathrm{t}=\mathrm{m}^{\text {б }}$
$-Y_{0} \in\{0,1\}^{\mathrm{t}}$
$-y_{i}=f_{t}\left(y_{i-1}\right)$
$-b_{i}=h_{t}\left(y_{i}\right)$
$-G^{\delta}\left(y_{0}\right)=b_{m-1} b_{m-2} b_{m-3} \ldots b_{0}$

Distinguishers and predictors

- Observe:
$\operatorname{Pr}\left[y_{i}=d \mid C(u, d, w)=1\right]$
$=\operatorname{Pr}\left[\mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=1 \mid \mathrm{y}_{\mathrm{i}}=\mathrm{d}\right] \operatorname{Pr}\left[\mathrm{y}_{\mathrm{i}}=\mathrm{d}\right] / \operatorname{Pr}[\mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=1]$
$=p_{i} /\left(2 p_{i-1}\right)$
$\operatorname{Pr}\left[y_{i}=\neg d \mid C(u, d, w)=0\right]$
$=\operatorname{Pr}\left[\mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=0 \mid \mathrm{y}_{\mathrm{i}}=\neg \mathrm{d}\right] \operatorname{Pr}\left[\mathrm{y}_{\mathrm{i}}=\mathrm{d} \mathrm{d}\right] / \operatorname{Pr}[\mathrm{C}(\mathrm{u}, \mathrm{d}, \mathrm{w})=0]$ $=\left(1-p_{i}^{\prime}\right) / 2\left(1-p_{i-1}\right)$

The BMY Generator

- Recall goal: for all $1>\delta>0$, family of PRGs $\left\{G_{m}\right\}$ with output length \mathbf{m} seed length $\mathbf{t}=\mathrm{m}^{\delta}$ error $\boldsymbol{\varepsilon}<1 / 6$
- If one way permutations exist then WLOG there is an $f=\left\{f_{n}\right\}$ with a hard bit $h=\left\{h_{n}\right\}$
\qquad

The BMY Generator

Theorem (BMY): for every $\delta>0$, and all d, $\mathrm{e}, \mathrm{G}^{\delta}$ is a $P R G$ with
error $\varepsilon<1 /$ m $^{\text {d }}$
fooling size $\mathbf{s}=\mathrm{m}^{\mathrm{e}}$ running time m^{c}

- Note: stronger than we needed
- sufficient to have $\boldsymbol{\varepsilon}<1 / 6 ; \mathbf{S}=\mathrm{m}$

April 22, 2004
CS151 Lecture 8

The BMY Generator

Generator $G^{\delta}=\left\{\mathcal{G}_{\mathrm{m}}^{\delta}\right\}$:
$-t=m^{\delta} ; y_{0} \in\{0,1\}^{\dagger} ; y_{i}=f_{t}\left(y_{i-1}\right) ; b_{i}=h_{t}\left(y_{i}\right)$
$-G_{m}^{\delta}\left(y_{0}\right)=b_{m-1} b_{m-2} b_{m-3} \cdots b_{0}$

- Proof:
- computable in time at most

$$
\mathrm{mt}^{\mathrm{c}}<\mathrm{m}^{\mathrm{c}+1}
$$

- assume G^{δ} does not ($1 / \mathrm{m}^{\mathrm{d}}$)-pass statistical test $\mathrm{C}=\left\{\mathrm{C}_{\mathrm{m}}\right\}$ of size m^{e} :
$\left|\operatorname{Pr}_{y \leftarrow u}[C(y)=1]-\operatorname{Pr}_{z \leftarrow-}[C(z)=1]\right|>1 / m^{d}$

The BMY Generator

Generator $G^{\delta}=\left\{G^{\delta}{ }_{m}\right\}$:

$-t=m^{\delta} ; y_{0} \in\{0,1\}^{\dagger} ; y_{i}=f_{t}\left(y_{i-1}\right) ; \quad b_{i}=h_{t}\left(y_{i}\right)$
$-G_{m}^{\delta}\left(y_{0}\right)=b_{m-1} b_{m-2} b_{m-3} . . b_{0}$

- can transform this distinguisher into a predictor P of size $\mathrm{m}^{\mathrm{e}}+\mathrm{O}(\mathrm{m})$:

$$
\operatorname{Pr}_{y}\left[P\left(b_{m-1} \ldots b_{m-i}\right)=b_{m-i-1}\right]>1 / 2+1 / m^{d-1}
$$

The BMY Generator

```
Generator G}\mp@subsup{G}{}{\delta}={\mp@subsup{G}{m}{\delta}\mp@subsup{}{m}{}}
    -t = m
    -G }\mp@subsup{}{m}{\delta}(\mp@subsup{y}{0}{})=\mp@subsup{b}{m-1}{}\mp@subsup{b}{m-2}{}\mp@subsup{b}{m-3}{}\ldots\mp@subsup{b}{0}{
```

 - a procedure to compute \(\mathrm{h}_{\mathrm{t}}\left(\mathrm{f}_{\mathrm{t}}^{-1}(\mathrm{y})\right)\)
 - set \(y_{m-i}=y ; \quad b_{m-i}=h_{t}\left(y_{m-i}\right)\)
 - compute \(y_{j}, b_{j}\) for \(j=m-i+1, m-i+2 \ldots, m-1\) as above
 - evaluate \(P\left(b_{m-1} b_{m-2} \cdots b_{m-1}\right)\)
 - \(f\) a permutation implies \(b_{m-1} b_{m-2} \ldots b_{m-1}\) distributed as
 (prefix of) output of generator:
 \(\operatorname{Pr}_{y}\left[P\left(b_{m-1} b_{m-2} \ldots b_{m-i}\right)=b_{m-i-1}\right]>1 / 2+1 / m^{d-1}\)
 April 22, 2004

The BMY Generator

```
Generator G}\mp@subsup{G}{}{\delta}={\mp@subsup{G}{m}{\delta}\mp@subsup{}{m}{}}
    -t =m}\mp@subsup{m}{}{\delta};\mp@subsup{y}{0}{}\in{0,1\mp@subsup{}}{}{\dagger};\mp@subsup{y}{i}{}=\mp@subsup{f}{+}{}(\mp@subsup{y}{i-1}{});\quad\mp@subsup{b}{i}{}=\mp@subsup{h}{+}{}(\mp@subsup{y}{i}{}
    -G }\mp@subsup{}{m}{\delta}(\mp@subsup{y}{0}{})=\mp@subsup{b}{m-1}{}\mp@subsup{b}{m-2}{}\mp@subsup{b}{m-3}{\prime\cdots}\mp@subsup{b}{0}{
```

 \(\operatorname{Pr}_{y}\left[P\left(b_{m-1} b_{m-2} \cdots b_{m-i}\right)=b_{m-i-1}\right]>1 / 2+1 / m^{d-1}\)
 - What is \(b_{m-i-1}\) ?
 \(b_{m-i-1}=h_{t}\left(y_{m-i-1}\right)=h_{t}\left(f_{t}^{-1}\left(y_{m-i}\right)\right)=h_{t}\left(f_{t}^{-1}(y)\right)\)
 - We have described a family of polynomial-size
 circuits that computes \(h_{t}\left(f_{t}^{-1}(y)\right)\) from \(y\) with success
 greater than \(1 / 2+1 /\) poly \((m)\)
 - Contradiction.
 The BMY Generator

April 22, 2004
CS151 Lecture 8

