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Derandomization

• Goal: try to simulate BPP is 
subexponential time (or better)

• use Pseudo-Random Generator (PRG):

• often: PRG “good” if it passes (ad-hoc) 
statistical tests
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Derandomization

• ad-hoc tests not good enough to prove 
BPP has non-trivial simulations

• Our requirements:
– G is efficiently computable

– “stretches” t bits into m bits

– “fools” small circuits: for all circuits C of size at 
most s:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| �
�
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Simulating BPP using PRGs

• Recall: L ∈ BPP implies exists p.p.t.TM M
x ∈ L � Pry[M(x,y) accepts] � 2/3
x ∉ L � Pry[M(x,y) rejects] � 2/3

• given an input x:
– convert M into circuit C(x, y)

– simplification: pad y so that |C| = |y| = m
• hardwire input x to get circuit Cx

Pry[Cx(y) = 1] � 2/3     (“yes”)
Pry[Cx(y) = 1] � 1/3     (“no”)
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Simulating BPP using PRGs

• Use a PRG G with
– output length m
– seed length t � m

– error
�

< 1/6
– fooling size s = m

• Compute Prz[Cx(G(z)) = 1] exactly
– evaluate Cx(G(z)) on every seed z ∈ {0,1}t

• running time (O(m)+(time for G))2t
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Simulating BPP using PRGs

• knowing Prz[Cx(G(z)) = 1], can distinguish 
between two cases:
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Blum-Micali-Yao PRG

• Initial goal: for all 1 > � > 0, we will build a 
family of PRGs {Gm} with:
output length m fooling size s = m
seed length t = m� running time mc

error 
�

< 1/6

• implies: BPP ⊂ ∩
�>0 TIME(2n� ) � EXP

• Why? simulation runs in time
O(m+mc)(2m�) = O(2m2�

) = O(2n2k�
) 
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Blum-Micali-Yao PRG

• PRGs of this type imply existence of one-way-
functions
– we’ll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function 
family f = {fn}, fn:{0,1}n → {0,1}n

– fn computable in poly(n) time
– for every family of poly-size circuits {Cn}

Prx[Cn(fn(x)) ∈fn-1(fn(x))] � �(n)
– �(n) = o(nc) for all c
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Blum-Micali-Yao PRG

• believe one-way functions exist
– e.g. integer multiplication, discrete log, RSA 

(w/ minor modifications)

Definition: One Way Permutation: OWF in 
which fn is 1-1
– can simplify “Prx[Cn(fn(x)) ∈fn-1(fn(x))] � �(n)” to

Pry[Cn(y) = fn-1(y)] � �(n)
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First attempt

• attempt at PRG from OWF f:
– t = m�

– Y0 ∈ {0,1}t

– yi = ft(yi-1)
– G(y0) = yk-1yk-2yk-3…y0

– k = m/t

• computable in time at most 
ktc < mc = mc
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First attempt

• output is “unpredictable”:
– no poly-size circuit C can output yi-1 given 

yk-1yk-2yk-3…yi with non-negl. success prob.

– if C could, then given yi can compute                
yk-1, yk-2, …, yi+2, yi+1 and feed to C

– result is poly-size circuit to compute 

yi-1 = ft-1(yi) from yi

– note: we’re using that ft is 1-1 
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First attempt

attempt:
• Y0 ∈ {0,1}t

• yi = ft(yi-1)

• G(y0) = 

yk-1yk-2yk-3…y0 
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First attempt

• one problem:
– hard to compute yi-1 from yi

– but might be easy to compute single bit (or 
several bits) of yi-1 from yi

– could use to build small circuit C that 
distinguishes G’s output from uniform 
distribution on {0,1}m
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First attempt

• second problem

– we don’t know if “unpredictability” given a 
prefix is sufficient to meet fooling requirement:

|Pry[C(y) = 1] – Prz[C(G(z)) = 1]| �
�
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Hard bits

• If {fn} is one-way permutation we know:
– no poly-size circuit can compute fn-1(y) from y with 

non-negligible success probability
Pry[Cn(y) = fn-1(y)] � �’(n)

• We want to identify a single bit position j for 
which:
– no poly-size circuit can compute (fn-1(x))j from x with 

non-negligible advantage over a coin flip
Pry[Cn(y) = (fn-1(y))j] � ½ + �(n)

April 22, 2004 CS151 Lecture 8 16

Hard bits

• For some specific functions f we know of 
such a bit position j

• More general: 

function hn:{0,1}n → {0,1} 
rather than just a bit position j.
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Hard bits

Definition: hard bit for g = {gn} is family h = {hn}, 
hn:{0,1}n → {0,1} such that if circuit family {Cn} of 
size s(n) achieves:

Prx[Cn(x) = hn(gn(x))] � ½ + �(n)

then there is a circuit family {C’n} of size s’(n) 
that achieves: 

Prx[C’n(x) = gn(x)] � �’(n)

with:
– �’(n) = (�(n)/n)O(1)

– s’(n) = (s(n)n/�(n))O(1)
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Goldreich-Levin

• To get a generic hard bit, first need to 
modify our one-way permutation

• Define f’n :{0,1}n x {0,1}n →{0,1}2n as:

f’n(x,y) = (fn(x), y)
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Goldreich-Levin

• Two observations:
– f’ is a permutation if f is

– if circuit Cn achieves
Prx,y[Cn(x,y) = f’n-1(x,y)] � �(n)

then for some y*

Prx[Cn(x,y*)=f’n-1(x,y*)=(fn-1(x), y*)] � �(n)
and so f’ is a one-way permutation if f is.

f’n(x,y) = (fn(x), y)
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Goldreich-Levin

• The Goldreich-Levin function: 

GL2n : {0,1}n  x {0,1}n  → {0,1}
is defined by:

GL2n (x,y) = ⊕i:yi = 1xi

– parity of subset of bits of x selected by 1’s of y
– inner-product of n-vectors x and y in GF(2)

Theorem (G-L): for every function f, GL is a 
hard bit for f’. (proof: problem set)
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Distinguishers and predictors

• Distribution D on {0,1}n 

• D � -passes statistical tests of size s if for 
all circuits of size s:

|Pry←Un
[C(y) = 1] – Pry ←D[C(y) = 1]| �

�

– circuit violating this is sometimes called an 
efficient “distinguisher”
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Distinguishers and predictors

• D � -passes prediction tests of size s if for 
all circuits of size s:

Pry←D[C(y1,2,…,i-1) = yi]  � ½ + 
�

– circuit violating this is sometimes called an 
efficient “predictor”

• predictor seems stronger
• Yao showed essentially the same!

– important result and proof (“hybrid argument”) 
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Distinguishers and predictors

Theorem (Yao): if a distribution D on {0,1}n

(�/n)-passes all prediction tests of size s, 
then it �-passes all statistical tests of size 
s’ = s – O(n). 
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Distinguishers and predictors

• Proof:
– idea: proof by contradiction
– given a size s’ distinguisher C:

|Pry←Un
[C(y) = 1] – Pry ←D[C(y) = 1]| > �

– produce size s predictor P:

Pry←D[P(y1,2,…,i-1) = yi] > ½ + �/n

– work with distributions that are “hybrids” of the 
uniform distribution Un and D
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Distinguishers and predictors

– given a size s’ distinguisher C:

|Pry←Un
[C(y) = 1] – Pry ←D[C(y) = 1]| > �

– define n+1 hybrid distributions 

– hybrid distribution Di: 
• sample b = b1b2…bn from D
• sample r = r1r2…rn from Un

• output:

b1b2…bi ri+1ri+2…rn
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Distinguishers and predictors

• Hybrid distributions:
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Distinguishers and predictors

– Define: pi = Pry←Di
[C(y) = 1]

– Note: p0=Pry←Un
[C(y)=1];   pn=Pry←D[C(y)=1]

– by assumption: � < |pn – p0|

– triangle inequality: |pn – p0| � �1 � i � n|pi – pi-1|

– there must be some i for which 
|pi – pi-1| > �/n

– WLOG assume pi – pi-1 > �/n 
• can invert output of C if necessary
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Distinguishers and predictors

– define distribution Di’ to be Di with i-th bit 
flipped

– pi’ = Pry←Di’
[C(y) = 1]

– notice:
Di-1 = (Di + Di’ )/2       pi-1 = (pi + pi’ )/2
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Distinguishers and predictors

• randomized predictor P’ for ith bit:
– input: u =  y1y2…yi-1

– flip a coin: d ∈{0, 1}

– w =  wi+1wi+2…wn ← Un-i

– evaluate C(udw)

– if 1, output d; if 0, output ¬d

Claim:

Pry ← D,d,w← Un-i
[P’(y1…i-1) = yi] > ½ + �/n.
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Distinguishers and predictors

• P’ is randomized procedure
• there must be some fixing of its random 

bits d, w that preserves the success prob.
• final predictor P has d* and w* hardwired:
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Size is

s’ + O(n) = s

as promised



6

April 22, 2004 CS151 Lecture 8 31

Distinguishers and predictors

• Proof of claim:
Pry ← D,d,w← Un-i

[P’(y1…i-1) = yi] =

Pr[yi = d | C(u,d,w) = 1]Pr[C(u,d,w) = 1]

+ Pr[yi = ¬d | C(u,d,w) = 0]Pr[C(u,d,w) = 0]

= Pr[yi = d | C(u,d,w) = 1](pi-1)

+ Pr[yi = ¬d | C(u,d,w) = 0](1 - pi-1)

April 22, 2004 CS151 Lecture 8 32

Distinguishers and predictors

– Observe:
Pr[yi = d | C(u,d,w) = 1] 
= Pr[C(u,d,w) = 1 | yi = d]Pr[yi=d] / Pr[C(u,d,w) = 1] 
= pi/(2pi-1)

Pr[yi = ¬d | C(u,d,w) = 0] 
= Pr[C(u,d,w) = 0 | yi= ¬d]Pr[yi=¬d] / Pr[C(u,d,w) = 0] 
= (1 – pi’) / 2(1 - pi-1)
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Distinguishers and predictors

• Success probability:
Pr[yi=d|C(u,d,w)=1](pi-1) + Pr[yi=¬d|C(u,d,w)=0](1-pi-1)

• We know:
– Pr[yi = d | C(u,d,w) = 1] = pi/(2pi-1)
– Pr[yi = ¬d | C(u,d,w) = 0] = (1 - pi’)/2(1 - pi-1)
– pi-1 = (pi + pi’)/2
– pi – pi-1 > �/n

• Conclude:
Pr[P’(y1…i-1) = yi] = ½ + (pi - pi’)/2  = ½ + pi – pi-1 

> ½ + �/n.
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The BMY Generator

• Recall goal: for all 1 > � > 0, family of 
PRGs {Gm} with
output length m fooling size s = m
seed length t = m� running time mc

error 
�

< 1/6

• If one way permutations exist then WLOG 
there is an f = {fn} with a hard bit h = {hn}
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The BMY Generator

• Generator G� = {G�
m}:

– t = m�

– Y0 ∈ {0,1}t

– yi = ft(yi-1)
– bi = ht(yi)

– G�(y0) = bm-1bm-2bm-3…b0 
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The BMY Generator

Theorem (BMY): for every � > 0, and all d, 
e, G� is a PRG with

error �
< 1/md 

fooling size s = me

running time mc

• Note: stronger than we needed
– sufficient to have 

�
< 1/6; s = m
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The BMY Generator

• Proof:
– computable in time at most 

mtc < mc+1

– assume G� does not (1/md)-pass statistical 
test C = {Cm} of size me:

|Pry←U[C(y) = 1] – Prz←D[C(z) = 1]| >1/md
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The BMY Generator

– can transform this distinguisher into a 
predictor P of size me + O(m):

Pry[P(bm-1…bm-i) = bm-i-1]  > ½ + 1/md-1
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The BMY Generator

– a procedure to compute ht(ft-1(y))
• set ym-i = y;    bm-i = ht(ym-i)
• compute yj, bj for j = m-i+1, m-i+2…, m-1 as above
• evaluate P(bm-1bm-2…bm-i)
• f a permutation implies bm-1bm-2…bm-i distributed as 

(prefix of) output of generator:
Pry[P(bm-1bm-2…bm-i) = bm-i-1]  > ½ + 1/md-1
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The BMY Generator

Pry[P(bm-1bm-2…bm-i) = bm-i-1]  > ½ + 1/md-1

– What is bm-i-1?
bm-i-1 = ht(ym-i-1) = ht(ft-1(ym-i)) = ht(ft-1(y)) 

– We have described a family of polynomial-size 
circuits that computes ht(ft-1(y)) from y with success 
greater than ½ + 1/poly(m)

– Contradiction. 
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The BMY Generator
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