CS151
Complexity Theory

Lecture 8
April 22, 2004

Derandomization

e Goal: try to simulate BPP is
subexponential time (or better)

e use Pseudo-Random Generator (PRG):

[seed}— 6 1 output string |

t bits m bits

« often: PRG “good” if it passes (ad-hoc)
statistical tests
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Derandomization

« ad-hoc tests not good enough to prove
BPP has non-trivial simulations
¢ Our requirements:
— G is efficiently computable
— “stretches” t bits into m bits
—“fools” small circuits: for all circuits C of size at
most S:

[Pr[C(y) = 1] - Pr,[C(G(2)) = 1]| < €
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Simulating BPP using PRGs

e Recall: L O BPP implies exists p.p.t.TM M
x O L = Pr,[M(x,y) accepts] 2 2/3
x O L = Pr,[M(x,y) rejects] = 2/3
e given an input x:
—convert M into circuit C(X, y)
— simplification: pad y so that |C| = |[y| = m
« hardwire input x to get circuit C,
Pr[C(y)=1122/3 (‘yes")
Pr[C(y)=1]1<1/3 (‘no”)

April 22, 2004 CS151 Lecture 8

Simulating BPP using PRGs

¢ Use a PRG G with

— output length m
—seed lengtht « m

—error £<1/6

—fooling sizes =m
* Compute Pr,[C,(G(z)) = 1] exactly

— evaluate C,(G(z)) on every seed z [J {0,1}
« running time (O(m)+(time for G))2!
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Simulating BPP using PRGs

 knowing Pr,[C,(G(z)) = 1], can distinguish
between two cases:
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Blum-Micali-Yao PRG

« Initial goal: for all 1 > & > 0, we will build a
family of PRGs {G,,} with:
output length m fooling size s =m
seed length t = md running time m¢
error €< 1/6

« implies: BPP 0 ng., TIME(27®) C EXP
¢ Why? simulation runs in time
O(m+m9)(2™) = 0(2"") = 0(2"*)
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Blum-Micali-Yao PRG

* PRGs of this type imply existence of one-way-
functions

— we'll use widely believed cryptographic assumptions

Definition: One Way Function (OWF): function
family f = {f,}, f,:{0,1} - {0,1}"
— f, computable in poly(n) time
— for every family of poly-size circuits {C,}
PrIC,(f,(x) O 2(F,()] < £(n)
— g(n) = o(n°) for all c
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Blum-Micali-Yao PRG

« believe one-way functions exist

—e.g. integer multiplication, discrete log, RSA
(w/ minor modifications)

Definition: One Way Permutation: OWF in
which f, is 1-1
— can simplify “Pr,[C,,(f,(x)) Of,2(f,(x))] < g(n)" to
PryICq(y) = f, 1 (y)] < &(n)
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First attempt

« attempt at PRG from OWF f:
—t=mb
-Y, 0{0,1}t
=¥ =fyi1)
= G(Yo) = YiaYi2Yis---Yo
—k=m/t

e computable in time at most

kt¢ < m¢ = m¢
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First attempt

e output is “unpredictable”:
— no poly-size circuit C can output y;; given
Yi1Yi2Yis---Y; With non-negl. success prob.
—if C could, then given y; can compute
Vit Yiar ---» Yis2s Visp @nd feed to C
—result is poly-size circuit to compute
Yia = f(y) from y,
— note: we're using that f, is 1-1
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First attempt

attempt: . f

fof f f
.« Y, 0{0,1}t -
oD g

* ¥ =fivia)

o G(yo) = same distribution!

Yi-1Yk-2Yk-3+-Yo
£t !

f. 1
s el el ] bl [a] B
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First attempt

¢ one problem:
— hard to compute y; ; from y;
— but might be easy to compute single bit (or
several bits) of y;; fromy,
— could use to build small circuit C that
distinguishes G’s output from uniform
distribution on {0,1}™
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First attempt

e second problem

—we don’t know if “unpredictability” given a
prefix is sufficient to meet fooling requirement:

[Pr,[C(y) = 1] - Pr,[C(G(2)) = 1]| < €
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Hard bits

« If {f,} is one-way permutation we know:

— no poly-size circuit can compute f,(y) from y with
non-negligible success probability

PrICy(y) = f, t (] < €(n)

* We want to identify a single bit position j for
which:
- no poly-size circuit can compute (f,™(x)); from x with
non-negligible advantage over a coin flip

PrIC(y) = (f ()] < Y2 + €(n)
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Hard bits

» For some specific functions f we know of
such a bit position j

* More general:

function h,:{0,1}" - {0,1}
rather than just a bit position j.
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Hard bits

Definition: hard bit for g = {g,,} is family h = {h_},
h,:{0,1}" — {0,1} such that if circuit family {C,} of
size s(n) achieves:

PrICh(x) = hy(9,())] 2 ¥2 + £(n)

then there is a circuit family {C’,} of size s’(n)
that achieves:

PrC",(x) = g,()] 2 £'(n)

with:
— €'(n) = (¢(n)/n)°®
— s(n) = (s(V)n/e(n))°®
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Goldreich-Levin

» To get a generic hard bit, first need to
modify our one-way permutation

+ Define f,:{0,1}"x {0,1}" - {0,1}*" as:

. xy) = (£,(¥), y)
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Goldreich-Levin

£L06Y) = (1,09, )]

* Two observations:
—f'is a permutation if fis

— if circuit C,, achieves
Pry[Ca(xy) = 1 (x,y)] 2 €(n)
then for some y*
PrIC,(xy)=F 1 (x.y)=(f,(X), y)] 2 &(n)
and so f' is a one-way permutation if f is.
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Goldreich-Levin

» The Goldreich-Levin function:
GL,,: {0,1}" x {0,1}» - {0,1}
is defined by:
GLyn (X,y) = Uiy = 1%
— parity of subset of bits of x selected by 1's of y
— inner-product of n-vectors x and y in GF(2)

Theorem (G-L): for every function f, GL is a
hard bit for f'. (proof: problem set)
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Distinguishers and predictors

« Distribution D on {0,1}"

« D g-passes statistical tests of size s if for
all circuits of size s:

[Pry._u,[C(y) = 1] - Pry p[C(y) = 1]|< €

— circuit violating this is sometimes called an
efficient “distinguisher”

April 22, 2004 CS151 Lecture 8 21

Distinguishers and predictors

» D g-passes prediction tests of size s if for
all circuits of size s:
Pry plC(Y1p,. i) =Vl <%+ €

— circuit violating this is sometimes called an
efficient “predictor”

« predictor seems stronger
¢ Yao showed essentially the same!
— important result and proof (“hybrid argument”)
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Distinguishers and predictors

Theorem (Yao): if a distribution D on {0,1}"
(e/n)-passes all prediction tests of size s,
then it e-passes all statistical tests of size
s'=s—0(n).
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Distinguishers and predictors

* Proof:
—idea: proof by contradiction
—given a size s’ distinguisher C:

[Pry _u,[C(Y) = 1] = Pry, p[C(y) = 1]| > €
— produce size s predictor P:
Pry_plP(Y1z, i1) =Y]l>¥2+en

—work with distributions that are “hybrids” of the
uniform distribution U, and D
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Distinguishers and predictors

— given a size s’ distinguisher C:
[Pry_u,[C(Y) = 1] = Pry p[C(y) = 1]| > ¢

— define n+1 hybrid distributions
— hybrid distribution D;:
« sample b = b;b,...b, from D
e sample r =ryr,...r,from U,
 output:
b,0,...0; Myl 1y
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Distinguishers and predictors

« Hybrid distributions:

D=V, LITTTTTTTTTTT]

S EEEEEN

D,=D:
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Distinguishers and predictors

— Define: p; = Pr,_p[C(y) = 1]
— Note: pg=Pr, _y,[C(Y)=1]; p,=Pr,_p[C(y)=1]
— by assumption: € <Py = Pol
—triangle inequality: [P, — Pol = 21 << nlP; = Pi4l
— there must be some i for which
[P = pial > €/n
—WLOG assume p; — p;.; > €/n
< can invert output of C if necessary
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Distinguishers and predictors

— define distribution D; to be D, with i-th bit
flipped

- pi’ = Pry&Di’[C(y) = 1]
Dy N T 1]

D

—notice:
Diy =(D;+ D)2 Pie = (P + P )2
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Distinguishers and predictors

» randomized predictor P’ for it" bit:
—input: U= y;y,...Viq
—flip a coin: d (K0, 1}
—W= Wiy Wisp. . Wy Un—i
—evaluate C(udw)
—if 1, output d; if O, output - d
Claim:
Pry _pawe unP' Vi) = Vil > Y2 + €/n.
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Distinguishers and predictors

» P’is randomized procedure

« there must be some fixing of its random
bits d, w that preserves the success prob.

« final predictor P has d"and w" hardwired:

\\ may need to

Size is circuit
for P: add - gate
s'+0(n)=s
as romised | TTTTTTTITTTITTITT]
p 4 .
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Distinguishers and predictors

¢ Proof of claim:

Pry _paw. upilP'V1evi) = Vil =
Prly; = d | C(u,d,w) = 1]JPr[C(u,d,w) = 1]
+ Prly, = =d | C(u,d,w) = O]Pr[C(u,d,w) = 0]

= Prly; =d | C(u,d,w) = 1](pi.1)
+Prly; = ~d | C(u,d,w) = 0](1 - pi4)
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Distinguishers and predictors

— Observe:
Prly;=d | C(u,d,w) = 1]
= Pr[C(u,d,w) =1 | y;=d]Pry;=d] / Pr[C(u,d,w) = 1]
=pi(2p;4)

Prly;=-d | C(u,d,w) = 0]

= Pr[C(u,d,w) =0 | y= ~d]Pr[y=-d] / Pr[C(u,d,w) = 0]
=(1-p)/2(1-py)

April 22, 2004 CS151 Lecture 8 32

Distinguishers and predictors

* Success probability:

Prly;=d|C(u,d.w)=1](p;.,) + Prly;=~d|C(u,d,w)=0](1-p;,)
¢ We know:

= Prly;=d | C(u,d,w) = 1] = p/(2p;,)

= Prly;=~d | C(u,dw) =0] = (1-p)/2(1-p;,y)

=P =P +p)2
= Pi—Ppig > €M
¢ Conclude:
PP Yy i) =Y = %2+ (0 - P)2 =%2+pi—piy
> +¢/n.
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The BMY Generator

» Recall goal: for all 1 > & > 0, family of
PRGs {G,} with
output length m
seed length t = md
error €< 1/6

fooling size S =m
running time m¢

« If one way permutations exist then WLOG
there is an f = {f} with a hard bit h = {h.}
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The BMY Generator

* Generator G® = {G?_}:
—t=md
—Y, 0{0,1}t
=¥ = filvid)
—b;=hyy)
— GO(Yg) = byabpoba-- by
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The BMY Generator

Theorem (BMY): for every 6 > 0, and all d,
e, Gis a PRG with

error € < 1/md
fooling size S = m*®
running time me¢

» Note: stronger than we needed
— sufficient to have € < 1/6; S = m
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The BMY Generator

Generator 6% = {&%, }:
-t=m Yo O{O1 y; = filyid): b= hyly)
'Gam(Yo) = bin.1bm-2bm3.-bo

* Proof:
— computable in time at most
mtc < mc+1
—assume G2 does not (1/md)-pass statistical
test C = {C,,} of size me:
[Pry _ulC(y) = 1] = Pr,_p[C(2) = 1]| >1/m¢
37

April 22, 2004 CS151 Lecture 8

The BMY Generator

Generator G° = {6, }:
-t=ms Yo 001} y; = filyin): bi = hy(y)
“Gam(Yo) = by.1bm-2bmz--bo

— can transform this distinguisher into a
predictor P of size me + O(m):
Pr[P(By...b > Y + 1/md-L

m—\) = bm—\—l]
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The BMY Generator

Generator 6°= {&%, }:
-t=md Yo O{0) y; = filyis): by = hy(y)
-6%1(Yo) = b1 2b3-bo

— a procedure to compute h(f(y))
o Setyni=Y:i D= hy(Yim)
= compute y;, bJ for j = m-i+1, m-i+2...,
« evaluate P(b,,1b,5...b.0)
« f a permutation implies b, ,b, ...
(prefix of) output of generator:
Pry[P(Dy1Pmp-- D) = Byl > %2 + 1/mdL

m-1 as above
b, distributed as
39
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The BMY Generator

Generator G° = {6, }:
-t=ms Yo O{01}: v, = fiyis): b; = hy(y)
_Gam(YO) = byy1bm-2bm-3--Po

PLIPOn1Dp-- D) = byl >% + 1met

— Whatis b, ;,?

i1 = hYmaid) = N V) = h(fH(Y))

— We have described a family of polynomial-size
circuits that computes h,(f-*(y)) from y with success
greater than % + 1/poly(m)

— Contradiction.
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The BMY Generator

CS151 Lecture 8

April 22, 2004

fT f, /ff ff fT
ff £ same
fi fi distribution
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