CS151
Complexity Theory
Lecture 7
April 20, 2004

Outline

- 3 examples of the power of randomness
-communication complexity
- polynomial identity testing
-complexity of finding unique solutions
- randomized complexity classes
- Adelman's Theorem

April 20, $2004 \quad$ CS151 Lecture 7

Communication complexity

- simple function (equality):

$$
E Q(x, y)=1 \text { iff } x=y
$$

- simple protocol:
- Alice sends x to Bob (n bits)
- Bob sends EQ(x, y) to Alice (1 bit)
- total: $n+1$ bits
- (works for any predicate f)

$$
\text { April } 20,2004 \quad \text { CS151 Lecture } 7
$$

Communication complexity

Theorem: no deterministic protocol can compute EQ(x, y) while exchanging fewer than $n+1$ bits.

- Proof:
- "input matrix":

Communication complexity

- Can we do better?
- deterministic protocol?
- probabilistic protocol?
- at each step: one party sends bits that are a function of held input and received bits so far and the result of some coin tosses
- required to output $f(x, y)$ with high probability over all coin tosses

Communication complexity

- at end of protocol involving k bits of communication, matrix is partitioned into at most 2^{k} combinatorial rectangles
- bits sent in protocol are the same for every input (x, y) in given rectangle
- conclude: $f(x, y)$ must be constant on each rectangle

Communication complexity

- protocol for EQ employing randomness?
- Alice picks random prime p in $\left\{1 \ldots 4 n^{2}\right\}$, sends:
- p
- (x mod p)
- Bob sends:
- (y mod p)
- players output 1 if and only if:
$(x \bmod p)=(y \bmod p)$

Communication complexity

- B sends 1 bit depending only on y and received bit:

Communication complexity
Matrix for EQ :

- any partition into combinatorial rectangles with constant $f(x, y)$ must have $2^{n}+1$ rectangles
- protocol that exchanges $\leq n$ bits can only create 2^{n} rectangles, so must exchange at least $\mathrm{n}+1$ bits.

Communication complexity

$-O(\log n)$ bits exchanged

- if $x=y$, always correct
- if $x \neq y$, incorrect if and only if:

$$
p \text { divides }|x-y|
$$

- \# primes in range is $\geq 2 n$
- \# primes dividing $|x-y|$ is $\leq n$
- probability incorrect $\leq 1 / 2$

Randomness gives an exponential advantage!!

April 20, 2004
CS151 Lecture 7

Polynomial identity testing

- Given: polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over field \mathbf{F}
- Is p identically zero?
- i.e., is $p(\mathbf{x})=0$ for all $\mathbf{x} \in F^{n}$
- (assume |F| larger than degree...)
- "polynomial identity testing" because given two polynomials p, q, we can check the identity $p \equiv q$ by checking if $(p-q) \equiv 0$
April 20,2004
CS151 Lecture 7

Polynomial identity testing

- polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given as arithmetic circuit:
- multiplication (fan-in 2)
- addition (fan-in 2)
- negation (fan-in 1)

Polynomial identity testing

- try all $|\mathbf{F}|^{\mathrm{n}}$ inputs?
- may be exponentially many
- multiply out symbolically, check that all coefficients are zero?
- may be exponentially many coefficients
- can randomness help?
- i.e., flip coins, allow small probability of wrong answer

Polynomial identity testing

Lemma (Schwartz-Zippel): Let

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

be a total degree d polynomial over a field F and let S be any subset of F. Then if p is not identically 0 ,

$$
\operatorname{Pr}_{r_{1}, r_{2}, \ldots, r_{n} \in S}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right] \leq d /|S| .
$$

Polynomial identity testing

- Proof:
- induction on number of variables n
- base case: $n=1, p$ is univariate polynomial of degree at most d
- at most d roots, so

$$
\operatorname{Pr}\left[p\left(r_{1}\right)=0\right] \leq d /|S|
$$

Polynomial identity testing

- write $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Sigma_{i}\left(x_{1}\right)^{i} p_{i}\left(x_{2}, \ldots, x_{n}\right)$
$-k=$ max. i for which $p_{i}\left(x_{2}, \ldots, x_{n}\right)$ not id. zero
- by induction hypothesis:

$$
\operatorname{Pr}\left[p_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|
$$

- whenever $p_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0, p\left(x_{1}, r_{2}, \ldots, r_{n}\right)$ is a univariate polynomial of degree k

$$
\operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0 \mid p_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq k /|S|
$$

Polynomial identity testing
$\operatorname{Pr}\left[p_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|$
$\operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0 \mid p_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq k /|S|$

- conclude:
$\operatorname{Pr}\left[p\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|+k /|S|=d /|S|$
- Note: can add these probabilities because
$\operatorname{Pr}\left[\mathrm{E}_{1}\right]=\operatorname{Pr}\left[\mathrm{E}_{1} \mid \mathrm{E}_{2}\right] \operatorname{Pr}\left[\mathrm{E}_{2}\right]+\operatorname{Pr}\left[\mathrm{E}_{1} \mid \neg \mathrm{E}_{2}\right] \operatorname{Pr}\left[\neg \mathrm{E}_{2}\right]$ $\leq \operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{1} \mid \neg E_{2}\right]$

April 20, 2004
CS151 Lecture 7 19

Polynomial identity testing

- Given: polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ over field \mathbf{F}
- Is p identically zero?

- Note: degree d is at most the size of input

April 20, $2004 \quad$ CS151 Lecture 7
20

Polynomial identity testing

- randomized algorithm: pick a subset $S \subset \mathbf{F}$ of size 2d
- pick $r_{1}, r_{2}, \ldots, r_{n}$ from S uniformly at random
- if $p\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$, answer "yes"
-if $p\left(r_{1}, r_{2}, \ldots, r_{n}\right) \neq 0$, answer "no"
- if p identically zero, never wrong
- if not, Schwartz-Zippel ensures probability of error at most $1 / 2$

Unique solutions

- a positive instance of SAT may have many satisfying assignments
- maybe the difficulty comes from not knowing which to "work on"
- if we knew \# satisfying assignments was 1 or 0 , could we zero in on the 1 efficiently?

April 20, 2004
22

Unique solutions

Question: given polynomial-time algorithm

Unique solutions

Theorem (Valiant-Vazirani): there is a randomized poly-time procedure that given a 3-CNF formula

$$
\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

outputs a 3-CNF formula φ ' such that

- if φ is not satisfiable then φ ' is not satisfiable
- if φ is satisfiable then with probability at least
$1 /(8 n) \varphi$ ' has exactly one satisfying assignment

Unique solutions

- Proof:
- given subset $S \subset\{1,2, \ldots, n\}$, there exists a 3-CNF formula θ_{S} on $x_{1}, x_{2}, \ldots, x_{n}$ and additional variables such that:
- $\left|\theta_{\mathrm{S}}\right|=O(\mathrm{n})$
- θ_{s} is satisfiable iff an even number of variables in $\left\{x_{i}\right\}_{i \in S}$ are true
- for each such setting of the x_{i} variables, this satisfying assignment is unique
- not difficult; details omitted

Unique solutions

Claim: if $2^{k} \leq|T| \leq 2^{k+1}$, then the probability φ_{k+2}
has exactly one satisfying assignment is $\geq 1 / 8$
$-\operatorname{fix} t \in T$

$$
\begin{gathered}
t = 0 1 0 1 \longdiv { 0 0 1 0 1 } 0 1 1 1 \\
t^{\prime}=1010 \\
11100 \\
0101 \\
S_{i}
\end{gathered}
$$

- Pr[t "agrees with" t' on $\left.\mathrm{S}_{\mathrm{i}}\right]=1 / 2$
- Pr[t agrees with t^{\prime} on $\left.\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}+2}\right]=(1 / 2)^{\mathrm{k}+2}$

Unique solutions

$-\operatorname{set} \varphi_{0}=\varphi$

- for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- pick random subset S_{i}
- set $\varphi_{i}=\varphi_{i-1} \wedge \theta_{S}$
- output random φ_{i}
$-\mathrm{T}=$ set of satisfying assignments for φ
- Claim: if $|T|>0$, then
$\operatorname{Pr}_{\mathrm{k} \in\{0,1,2, \ldots, \mathrm{n}-1\}}\left[2^{\mathrm{k}} \leq|T| \leq 2^{\mathrm{k}+1}\right] \geq 1 / \mathrm{n}$
April 20, 2004
CS151 Lecture 7
26

Unique solutions

$-\operatorname{Pr}\left[t\right.$ agrees with some t' on $\left.S_{1}, \ldots, S_{k+2}\right]$

$$
\leq(|T|-1)(1 / 2)^{k+2}<1 / 2
$$

- $\operatorname{Pr}\left[t\right.$ satisfies $\left.S_{1}, S_{2}, \ldots, S_{k+2}\right]=(1 / 2)^{k+2}$
- Pr[t unique satisfying assignment of $\left.\varphi_{k+2}\right]$

$$
>(1 / 2)^{k+3}
$$

- sum over at least 2^{k} different $t \in T$ (disjoint events); claim follows.

Randomized complexity classes

- model: probabilistic Turing Machine
- deterministic TM with additional read-only tape containing "coin flips"
- BPP (Bounded-error Probabilistic Poly-time)
$-L \in B P P$ if there is a p.p.t. TM M:

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 2 / 3
$$

$$
x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }] \geq 2 / 3
$$

- "p.p.t" = probabilistic polynomial time

Randomized complexity classes

- RP (Random Polynomial-time)
$-L \in \mathbf{R P}$ if there is a p.p.t. TM M:

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 1 / 2 \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }]=1
\end{aligned}
$$

- coRP (complement of Random Polynomial-time)
$-L \in \mathbf{c o R P}$ if there is a p.p.t. TM M:

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }]=1 \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }] \geq 1 / 2
\end{aligned}
$$

Randomized complexity classes

These classes may capture "efficiently computable" better than \mathbf{P}

- " $1 / 2$ " in RP, coRP definition unimportant
- can replace by $1 /$ poly(n)
- " $2 / 3$ " in BPP definition unimportant
- can replace by $1 / 2+1 /$ poly(n)
- Why? error reduction
- we will see simple error reduction by repetition
- more sophisticated error reduction later

Error reduction for RP

- given L and p.p.t TM M:

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq \varepsilon \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }]=1
\end{aligned}
$$

- new p.p.t TM M':
- simulate $\mathrm{M} \mathrm{k} / \varepsilon$ times, each time with independent coin flips
- accept if any simulation accepts
- otherwise reject

Error reduction

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq \varepsilon \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }]=1
\end{aligned}
$$

- if $x \in L$:
- probability a given simulation "bad" $\leq(1-\varepsilon)$
- probability all simulations "bad" $\leq(1-\varepsilon)^{(k / \varepsilon)} \leq e^{-k}$

$$
\operatorname{Pr}_{\mathrm{y}}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right) \text { accepts }\right] \geq 1-\mathrm{e}^{-\mathrm{k}}
$$

- if $x \notin L$:

$$
\operatorname{Pr}_{\mathrm{y}}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right) \text { rejects }\right]=1
$$

April 20, 2004
CS151 Lecture 7
${ }_{3} 3$

Error reduction for BPP

- given L, and p.p.t. TM M:

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 1 / 2+\varepsilon \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }] \geq 1 / 2+\varepsilon
\end{aligned}
$$

- new p.p.t. TM M':
- simulate $M k / \varepsilon^{2}$ times, each time with independent coin flips
- accept if majority of simulations accept
- otherwise reject

Error reduction for BPP

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 1 / 2+\varepsilon \\
& x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }] \geq 1 / 2+\varepsilon
\end{aligned}
$$

$$
\text { - if } x \in L
$$

$$
\operatorname{Pr}_{y^{\prime}}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right) \text { accepts }\right] \geq 1-(1 / 2)^{\Omega(\mathrm{k})}
$$

$$
\text { - if } x \notin L
$$

$$
\operatorname{Pr}_{\mathrm{y}^{\prime}}\left[\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right) \text { rejects }\right] \geq 1-(1 / 2)^{\Omega(\mathrm{k})}
$$

Randomized complexity classes

One more important class:

- ZPP (Zero-error Probabilistic Poly-time) $-\mathbf{Z P P}=\mathbf{R P} \cap \mathbf{c o R P}$
- $\operatorname{Pr}_{y}[M(x, y)$ outputs "fail" $] \leq 1 / 2$
- otherwise outputs correct answer

Relationship to other classes

- all these classes contain \mathbf{P}
- they can simply ignore the tape with coin flips
- all are in PSPACE
- can exhaustively try all strings y
- count accepts/rejects; compute probability
- $\mathbf{R P} \subset \mathbf{N P}$ (and coRP $\subset \mathbf{c o N P}$)
- multitude of accepting computations
- NP requires only one

Relationship to other classes

BPP

- It is not known if BPP = EXP (or even NEXP!)
- but there are strong hints that it does not
- Is there a deterministic simulation of BPP that does better than brute-force search?
- yes, if allow non-uniformity

Theorem (Adelman): BPP \subset P/poly

BPP and Boolean circuits

- Proof:
- language $L \in$ BPP
- error reduction gives TM M such that
- if $x \in L$
$\operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 1-\left.(1 / 2)^{|x|}\right|^{2}$
- if $x \notin L$
$\operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 1-(1 / 2)|x|^{2}$

BPP and Boolean circuits

- Does BPP = EXP ?
- Adelman's Theorem shows:

BPP = EXP implies EXP \subset P/poly

If you believe that randomness is all-powerful, you must also believe that non-uniformity gives an exponential advantage.

BPP and Boolean circuits

- say " y is bad for x " if $M(x, y)$ gives incorrect answer
- for fixed x : $\operatorname{Pr}_{y}[\mathrm{y}$ is bad for x$] \leq(1 / 2)|x|^{2}$
$-\operatorname{Pr}_{y}[y$ is bad for some $x] \leq\left. 2^{|x|}(1 / 2)^{|x|}\right|^{2}<1$
- Conclude: there exists some y on which
$\mathrm{M}(\mathrm{x}, \mathrm{y})$ is always correct
- build circuit for M , hardwire this y

[^0]CS151 Lecture 7

BPP

- Next:
further explore the relationship between

$$
\begin{aligned}
& \text { randomness } \\
& \text { and } \\
& \text { nonuniformity }
\end{aligned}
$$

- Main tool: pseudo-random generators

April 20, 2004

CS151 Lecture 7

[^0]: April 20, 2004

