

Outline

- CLIQUE
- monotone circuits and problems
- Razborov's lower bound for monotone circuits computing CLIQUE

April 15, 2004

CS151 Lecture 6
2

Clique

Recall...
IS $=\{(G, k) \mid G$ is a graph with an independent set $\mathrm{V}^{\prime} \subset \mathrm{V}$ of size $\left.\geq \mathrm{k}\right\}$
(independent set = set of vertices no 2 of which are connected by an edge)

- IS is NP-complete.

April 15, 2004
CS151 Lecture 6
${ }^{3}$

Circuit lower bounds

- We think that NP requires exponential-size circuits.
- Where should we look for a problem to attempt to prove this?
- Intuition: "hardest problems" - i.e., NPcomplete problems

Circuit lower bounds

- Formally:
- if any problem in NP requires superpolynomial size circuits
- then every NP-complete problem requires super-polynomial size circuits
- Proof idea: poly-time reductions can be performed by poly-size circuits using a variant of CVAL construction

April 15, 2004
CS151 Lecture 6

Monotone problems

- Definition: monotone language = language

$$
\mathrm{L} \subset\{0,1\}^{*}
$$

such that $x \in L$ implies $x^{\prime} \in L$ for all $x \preceq x^{\prime}$.

- flipping a bit of the input from 0 to 1 can only change the output from "no" to "yes" (or not at all)

Monotone problems

- some NP-complete languages are monotone
- e.g. CLIQUE (given as adjacency matrix):

- others: HAMILTON CYCLE, SET COVER...
- but not SAT, KNAPSACK...

April 15, 2004
CS151 Lecture 6
8

Monotone circuits

A restricted class of circuits:

- Definition: monotone circuit = circuit whose gates are ANDs (\wedge), ORs (\vee), but no NOTs
- can only compute monotone functions - monotone functions closed under AND, OR

$$
\text { April 15, } 2004
$$

CS151 Lecture 6 9

Monotone circuits

A monotone circuit for CLIQUE $_{\mathrm{n}, \mathrm{k}}$

- Input: graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ as adj. matrix, $|\mathrm{V}|=\mathrm{n}$ - variable $\mathrm{x}_{\mathrm{i}, \mathrm{j}}$ for each possible edge (i,j)
- $\operatorname{ISCLIQUE}(S)=$ monotone circuit that $=1$ iff $S \subset V$ is a clique: $\quad \wedge_{i, j \in S} x_{i, j}$
- CLIQUE $_{\mathrm{n}, \mathrm{k}}$ computed by monotone circuit:

$$
V_{S \subset v,|S|=k} \operatorname{ISCLIQUE(S)}
$$

Monotone circuits

- Size of this monotone circuit for

Monotone circuits

- A question:

Do all
poly-time computable monotone functions
have
poly-size monotone circuits?

- recall: true in non-monotone case

CS151 Lecture 6

CLIQUE $_{\mathrm{n}, \mathrm{k}}$:

- when $\mathrm{k}=\mathrm{n}^{1 / 4}$, size is approximately:

$$
\left(\frac{n}{n^{1 / 4}}\right)^{n^{1 / 4}}\left(\frac{n^{1 / 4}}{2}\right)^{2} \approx n^{\Omega\left(n^{1 / 4}\right)}
$$

April 15, 2004
CS151 Lecture 6
12

Monotone circuits

- Theorem (Razborov 85): monotone circuits for CLIQUE n, k with $k=n^{1 / 4}$ must have size at least

$$
2^{\Omega\left(n^{1 / 8}\right)} .
$$

- Proof:
- rest of lecture

Proof idea

- on test collection of positive/negative instances of CLIQUE ${ }_{n, k}$:
- local property: few errors at each gate
- global property: many errors on test collection
- Conclude: C has many gates

Preview

- approximate circuit $\operatorname{CC}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}\right)$
- $\mathrm{n}=$ \# nodes
- $\mathrm{k}=\mathrm{n}^{1 / 4}=$ size of clique
- $h=n^{1 / 8}=$ max. size of subsets X_{i}

- this is "global property" that ensures lots of errors
- many graphs G with no k-cliques, but clique on X_{i} of size h

Proof idea

- "method of approximation"
- suppose C is a monotone circuit for CLIQUE $_{n, k}$
- build another monotone circuit CC that "approximates" C gate-by-gate

April 15, 2004
CS151 Lecture 6
14

Notation

- input: graph $G=(V, E)$
- variable $\mathrm{x}_{\mathrm{i}, \mathrm{k}}$ for each potential edge (j, k)
- $\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m}\right)$, where $X_{i} \subset V$, means:

$$
v_{i}\left(\wedge_{j, k \in x_{i}} x_{j, k}\right)
$$

- For example: $\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m}\right)$ where the X_{i} range over all k -subsets of V
- this is the obvious monotone circuit for CLIQUE $_{n, k}$ from a previous slide.

Preview

- approximate circuit $\operatorname{CC}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}\right)$
- $p=n^{1 / 8} \log n$
- $M=(p-1)^{h} h!$
- max \# of subsets is M (so $m \leq M$)
- critical for "local property" that ensures few errors at each gate

Building CC

- CC ("crude circuit") for circuit C defined inductively as follows:
- CC for single variable x is just $\mathrm{CC}(\{x\})$
- no errors yet!
- CC for circuit C of form:

- "approximate OR" of CC for C', CC for C"

Approximate OR

- exact OR:

$$
\mathrm{CC}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots \mathrm{Y}_{\mathrm{m} \prime}\right)
$$

- set sizes still $\leq h$
- may be up to 2 M sets; need to reduce to M

Sunflowers

- Definition: (h, p)-sunflower is a family of p sets ("petals") each of size at most h, such that intersection of every pair is a subset S (the "core").

Building CC

- CC for circuit C of form:

- "approximate AND" of CC for C ', CC for C "
- "approximate OR" and "approximate AND" steps introduce errors

Approximate OR

- throw away sets? bad:many errors
- throw away overlapping sets? - better
- throw away special configuration of overlapping sets - best

Sunflowers

Lemma (Erdös-Rado): Every family of more than $M=(p-1)^{\text {h }} \mathrm{h}$! sets, each of size at most h, contains an (h, p)-sunflower.

- Proof:
- not hard
- in Papadimitriou

Approximate OR

- $\mathrm{CC}^{\prime}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{m}}\right)$
- $C^{\prime \prime}{ }^{\prime}\left(Y_{1}, Y_{2}, \ldots Y_{m "}\right)$
- exact OR:

$$
\operatorname{CC}\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}, Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)
$$

- while more than M sets, find (h, p)-sunflower; replace with its core ("pluck")
- approximate OR:
$\operatorname{CC}\left(\right.$ pluck $\left.\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}, Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)\right)$
April 15, $2004 \quad$ CS151 Lecture 6 25

Approximate AND

- $C^{\prime}\left(X_{1}, X_{2}, \ldots X_{m}{ }^{\prime}\right)$
- $C C^{\prime \prime}\left(Y_{1}, Y_{2}, \ldots Y_{m "}\right)$
- exact AND:

$$
C C\left(\left\{\left(X_{i} \cup Y_{j}\right): 1 \leq i \leq m^{\prime}, 1 \leq j \leq m^{\prime \prime}\right\}\right)
$$

- some sets may be larger than h; discard them
- may be up to M^{2} sets. While > M sets, find (h, p)sunflower; replace with its core ("pluck")
- approximate AND:

$$
\mathrm{CC}\left(\text { pluck }\left(\left\{\left(\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right):\left|\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right| \leq \mathrm{h}\right\}\right)\right)
$$

April 15, 2004
CS151 Lecture 6
26

Test collection

- Negative instances:
- k-1 colors
- color each node uniformly
at random with one of the colors
- edge (x, y) iff x, y different colors
- no k-clique
- include graphs in their multiplicities
- makes analysis easier

Analysis

- "false positive":
- negative example
- gate is supposed to output 0 , but our CC outputs 1

Lemma: each approximation step introduces at most $M^{2}(k-1)^{n} / 2^{p}$ false positives.

Analysis

- Proof:
- case 1: OR

$$
\operatorname{CC}^{\prime}\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}\right) \quad \operatorname{CCO}^{\prime \prime}\left(Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)
$$

$\operatorname{CC}\left(\right.$ pluck $\left(X_{1}, X_{2}, \ldots X_{m^{\prime}}, Y_{1}, Y_{2}, \ldots Y_{m}{ }^{\prime \prime}\right)$)

- given "plucking": replace $Z_{1} \ldots Z_{p}$ with Z

- bad case: clique on Z, and each petal is missing at least one edge
April 15, 2004
CS151 Lecture 6

Analysis

- what is the probability of a repeated color in each Z_{i} but no repeated colors in Z ?
$\operatorname{Pr}\left[R\left(Z_{1}\right) \wedge R\left(Z_{2}\right) \ldots R\left(Z_{p}\right) \wedge \neg R(Z)\right]$ $\leq \operatorname{Pr}\left[R\left(Z_{1}\right) \wedge R\left(Z_{2}\right) \ldots R\left(Z_{p}\right) \mid \neg R(Z)\right]$ colors in S (definition of conditional probability)
$=\prod_{\mathrm{i}} \operatorname{Pr}\left[\mathrm{R}\left(\mathrm{Z}_{\mathrm{i}}\right) \mid \neg \mathrm{R}(\mathrm{Z})\right]$
(independent events given no repeats in Z)
$\leq \prod_{i} \operatorname{Pr}\left[\mathrm{R}\left(\mathrm{Z}_{\mathrm{i}}\right)\right]$
(obviously larger)

Analysis

- for every pair of vertices in Z_{i}, probability of same color is $1 /(k-1)$
$-R\left(Z_{i}\right) \leq(h$ choose 2$) /(k-1) \leq 1 / 2$
$-\Pi_{\mathrm{i}} \operatorname{Pr}\left[R\left(Z_{\mathrm{i}}\right)\right] \leq(1 / 2)^{\mathrm{p}}$
- \# negative examples is $(k-1)^{n}$
- \# false positives in given plucking step is at most $(1 / 2)^{p}(k-1)^{\mathrm{n}}$
- at most M plucking steps
- \# false positives at $\mathrm{OR} \leq \mathrm{M}(1 / 2)^{\mathrm{p}}(\mathrm{k}-1)^{\mathrm{n}}$

April 15, 2004
CS151 Lecture 6
32
Analysis

- up to M^{2} pluckings
- each introduces at most
$(1 / 2)^{\mathrm{p}}(\mathrm{k}-1)^{\mathrm{n}}$
false positives (previous slides)
- \# false positives at AND $\leq \mathrm{M}^{2}(1 / 2)^{\mathrm{p}}(\mathrm{k}-1)^{\mathrm{n}}$
April 15,2004

cs151 Lecture 6

Analysis

- case 2: AND

$$
C C C^{\prime}\left(X_{1}, X_{2}, \ldots X_{m}\right) \quad C C C^{\prime \prime}\left(Y_{1}, Y_{2}, \ldots Y_{m^{\prime \prime}}\right)
$$

$$
\text { CC(pluck(} \left.\left.\left\{\left(\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right):\left|\mathrm{X}_{\mathrm{i}} \cup \mathrm{Y}_{\mathrm{j}}\right| \leq \mathrm{h}\right\}\right)\right)
$$

- discarding sets $\left(X_{i} \cup Y_{i}\right)$ larger than h can only make circuit accept fewer examples
- no false positives here

Analysis

- "false negative":
- positive example;
- gate is supposed to output 1 , but our CC outputs 0
Lemma: each approximation step introduces at most

$$
M^{2}\binom{n-h-1}{k-h-1}
$$

false negatives.

CS151 Lecture 6 35

Analysis

- Proof:
- Case 1: OR
- plucking can only make circuit accept more examples
- no false negatives here
- Case 2: AND

$$
\begin{gathered}
C C C '_{\prime}\left(X_{1}, X_{2}, \ldots X_{m}\right) \\
\text { CC(pluck } \left.\left(\left\{\left(X_{i} \cup Y_{j}\right):\left|X_{i} \cup Y_{j}\right| \leq h\right\}\right)\right)
\end{gathered}
$$

Analysis

- discarding set $Z=\left(X_{i} \cup Y_{j}\right)$ larger than h may introduce false negatives
- any clique that includes Z is a problem; there are at most

$$
\binom{n-|Z|}{k-|Z|} \leq\binom{ n-h-1}{k-h-1}
$$

such positive examples, since $|Z|>h$

- at most M^{2} such deletions
- we've seen plucking doesn't matter

Analysis

Lemma: every non-trivial CC outputs 1 on at least $1 / 2$ of the negative examples.

- Proof:
- CC contains some set X of size at most h
- accepts all neg. examples with different colors in X
- probability X has repeated colors is

$$
R(X) \leq(h \text { choose } 2) /(k-1) \leq 1 / 2
$$

- probability over negative examples that CC accepts is at least $1 / 2$.

Finishing up

- First possibility: trivial CC, rejects all positive examples
- every positive example must have been false negative at some gate
- number of gates must be at least:

$$
\binom{n}{k} / M^{2}\binom{n-h-1}{k-h-1}
$$

Finishing up

$$
\begin{aligned}
& \binom{n}{k} / M^{2}\binom{n-h-1}{k-h-1} \\
& \frac{1}{2}(k-1)^{n} / M^{2} 2^{-p}(k-1)^{n}
\end{aligned}
$$

Both quantities are at least $2^{\Omega\left(n^{1 / 8}\right)}$

Conclusions

- A question (true in non-monotone case):

Do all
poly-time computable monotone functions have poly-size monotone circuits?

- if yes, then we would have just proved $P \neq \mathbf{N P}$ - why?

Conclusions

- unfortunately, answer is no
- Razborov later showed similar (superpolynomial) lower bound for MATCHING, which is in P...

