

Introduction

Power from an unexpected source?

- we know $\mathbf{P} \neq \mathrm{EXP}$, which implies no polytime algorithm for Succinct CVAL
- poly-size Boolean circuits for Succinct CVAL ??

Introduction

...and the depths of our ignorance:

Does NP have linear-size, log-depth Boolean circuits ??

Outline

- Boolean circuits and formulae
- uniformity and advice
- the NC hierarchy and parallel computation
- the quest for circuit lower bounds
- a lower bound for formulae

April 8, 2004
CS151 Lecture 4

Boolean circuits

- circuit C

- directed acyclic graph
- nodes: AND (\wedge); OR (\vee); NOT (\neg); variables x_{i}

- C computes function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ in natural way
- identify C with function f it computes

April 8, 2004
CS151 Lecture 4 5

Boolean circuits

- size = \# gates
- depth = longest path from input to output
- formula (or expression): graph is a tree
- every function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ computable by a circuit of size at most $O\left(n 2^{n}\right)$
- AND of n literals for each x such that $f(x)=1$
- OR of up to 2^{n} such terms

April 8, 2004
CS151 Lecture 4

Circuit families

- circuit works for specific input length
- we're used to $f: \sum^{*} \rightarrow\{0,1\}$
- circuit family : a circuit for each input length $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots=$ " $\left\{\mathrm{C}_{n}\right\}$ "
- "\{ $\left.\mathrm{C}_{n}\right\}$ computes f " iff for all x

$$
\mathrm{C}_{|\mathrm{x}|}(\mathrm{x})=\mathrm{f}(\mathrm{x})
$$

- "\{ $\left.C_{n}\right\}$ decides L ", where L is the language associated with f

$$
\text { April 8, } 2004 \quad \text { CS151 Lecture } 4
$$

Connection to TMs

- other direction?
- A poly-size circuit family:
$-C_{n}=\left(x_{1} \vee \neg x_{1}\right)$ if M_{n} halts
$-C_{n}=\left(x_{1} \wedge \neg x_{1}\right)$ if M_{n} loops
- decides (unary version of) HALT!
- oops...

April 8, 2004
CS151 Lecture 4

Uniformity

Theorem: $\mathbf{P}=$ languages decidable by logspace uniform, polynomial-size circuit families $\left\{\mathrm{C}_{n}\right\}$.

- Proof:
- already saw (\Rightarrow)
$-(\Leftarrow)$ on input x , generate $\mathrm{C}_{|\mathrm{x}|}$, evaluate it and accept iff output $=1$

Connection to TMs

- TM M running in time $\mathrm{t}(\mathrm{n})$ decides language L
- can build circuit family $\left\{\mathrm{C}_{n}\right\}$ that decides L
- size of $\mathrm{C}_{\mathrm{n}}=\mathrm{O}\left(\mathrm{t}(\mathrm{n})^{2}\right)$
- Proof: CVAL construction
- Conclude: $L \in \mathbf{P}$ implies family of polynomial-size circuits that decides L

Uniformity

- Strange aspect of circuit family:
- can "encode" (potentially uncomputable) information in family specification
- solution: uniformity - require specification is simple to compute
- Definition: circuit family $\left\{\mathrm{C}_{n}\right\}$ is logspace uniform iff TM M outputs C_{n} on input 1^{n} and runs in $O(\log n)$ space

TMs that take advice

- family $\left\{C_{n}\right\}$ without uniformity constraint is called "non-uniform"
- regard "non-uniformity" as a limited resource just like time, space, as follows:
- add read-only "advice" tape to TM M
- M "decides L with advice $A(n)$ " iff
$M(x, A(|x|))$ accepts $\Leftrightarrow x \in L$
- note: $A(n)$ depends only on $|x|$

TMs that take advice

- Definition: $\operatorname{TIME}(\mathrm{t}(\mathrm{n})) / \mathrm{f}(\mathrm{n})=$ the set of those languages L for which:
-there exists $A(n)$ s.t. $|A(n)| \leq f(n)$
-TM M decides L with advice $A(n)$
- most important such class:

P/poly $=\cup_{k} \operatorname{TIME}\left(n^{k}\right) / n^{k}$

April 8, 2004
CS151 Lecture 4 13

TMs that take advice

Theorem: $L \in P /$ poly iff L decided by family of (non-uniform) polynomial size circuits.

- Proof:
$-(\Rightarrow) C_{n}$ from CVAL construction; hardwire advice $A(n)$
$-(\Leftarrow)$ define $A(n)=$ description of C_{n}; on input x, TM simulates $C_{n}(x)$

April 8, 2004
CS151 Lecture 4
14

Approach to P/NP

- Believe NP $\not \subset \mathbf{P}$

- equivalent: "NP does not have uniform, polynomial-size circuits"
- Even believe NP $\not \subset \mathbf{P} /$ poly
- equivalent: "NP (or, e.g. SAT) does not have polynomial-size circuits"
- implies $\mathbf{P} \neq \mathbf{N P}$
- many believe: best hope for $\mathbf{P} \neq \mathbf{N P}$

Parallelism

- the NC ("Nick's Class") Hierarchy (of logspace uniform circuits):

$$
N_{k}=O\left(\log ^{k} n\right) \text { depth, poly }(n) \text { size }
$$

$$
N C=U_{k} N C_{k}
$$

- captures "efficiently parallelizable problems"
- not realistic? overly generous
- OK for proving non-parallelizable

April 8, 2004
CS151 Lecture 4 17

Matrix Multiplication

- what is the parallel complexity of this problem?
- work = poly(n)
- time $=\log ^{k}(\mathrm{n})$? (which k ?)

CS151 Lecture 4

Matrix Multiplication

- two details
- arithmetic matrix multiplication...

$$
A=\left(a_{i, k}\right) B=\left(b_{k, j}\right) \quad(A B)_{i, j}=\Sigma_{k}\left(a_{i, k} \times b_{k, j}\right)
$$

... vs. Boolean matrix multiplication:

$$
A=\left(a_{i, k}\right) B=\left(b_{k, j}\right) \quad(A B)_{i, j}=v_{k}\left(a_{i, k} \wedge b_{k, j}\right)
$$

- single output bit: to make matrix multiplication a language: on input $A, B,(i, j)$ output $(A B)_{i, j}$

Boolean formulas and $\mathbf{N C}_{1}$

- Previous circuit is actually a formula. This is no accident:

Theorem: $L \in \mathrm{NC}_{1}$ iff decidable by polynomial-size uniform family of Boolean formulas.

Boolean formulas and $\mathbf{N C}_{1}$

- Proof:
$-(\Rightarrow)$ convert $\mathbf{N C}_{1}$ circuit into formula
- recursively:

- note: logspace transformation (stack depth $\log \mathrm{n}$, stack record 1 bit - "left" or "right")

Boolean formulas and $\mathbf{N C}_{\mathbf{1}}$

- D any minimal subtree with size at least $n / 3$
- implies size(D) $\leq 2 n / 3$
- define $T(n)$ = maximum depth required for any
size n formula
$-C_{1}, C_{0}$, D all size $\leq 2 n / 3$

$$
T(n) \leq T(2 n / 3)+3
$$

implies $\mathrm{T}(\mathrm{n}) \leq \mathrm{O}(\log \mathrm{n})$

April 8, 2004
CS151 Lecture 4

Relation to other classes

- Clearly NC $\subset \mathbf{P}$
- recall $\mathbf{P} \equiv$ uniform poly-size circuits
- $\mathrm{NC}_{1} \subset \mathbf{L}$
- on input x, compose logspace algorithms for:
- generating $\mathrm{C}_{|\mathrm{x}|}$
- converting to formula
- FVAL

Relation to other classes

- $\mathrm{NL} \subset \mathrm{NC}_{2}: ~ \mathrm{~S}-\mathrm{T}-\mathrm{CONN} \in \mathrm{NC}_{2}$
- given $G=(V, E)$, vertices s, t
- A = adjacency matrix (with self-loops)
$-\left(A^{2}\right)_{i, j}=1$ iff path of length ≤ 2 from node i to node j
$-\left(A^{n}\right)_{i, j}=1$ iff path of length $\leq n$ from node i to node j
- compute with depth $\log n$ tree of Boolean matrix multiplications, output entry s, t
$-\log ^{2} n$ depth total
April 8, 2004
CS151 Lecture 4
26

NC vs. P

- can every uniform, poly-size Boolean circuit family be converted into a uniform, poly-size Boolean formula family?

$$
\mathrm{NC}_{1} \stackrel{?}{=} \mathrm{P}
$$

Lower bounds

- Recall: "NP does not have polynomial-size circuits" (NP $\not \subset \mathbf{P} /$ poly) implies $\mathbf{P} \neq \mathbf{N P}$
- major goal: prove lower bounds on (nonuniform) circuit size for problems in NP
- believe exponential
- super-polynomial enough for $\mathbf{P} \neq \mathbf{N P}$
- best bound known: 4.5n
- don't even have super-polynomial bounds for problems in NEXP
April 8,2004
CS151 Lecture 4

Lower bounds

- lots of work on lower bounds for restricted classes of circuits
- we'll see two such lower bounds:
- formulas
- monotone circuits

Shannon's counting argument

- frustrating fact: almost all functions require huge circuits

Theorem (Shannon): With probability at least $1-o(1)$, a random function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

requires a circuit of size $\Omega\left(2^{n} / n\right)$.

Shannon's counting argument
$-C\left(n, c 2^{n} / n\right)<\left((2 n) c^{2} 2^{2 n / n^{2}}\right)^{\left(c 2^{n} / n\right)}$
$<0(1) 2^{2 c 2^{n}}$
$<0(1) 2^{2^{n}} \quad$ (if $\left.c \leq 1 / 2\right)$

- probability a random function has a circuit of size $s=(1 / 2) 2^{2} / n$ is at most $C(n, s) / B(n)<o(1)$

Shannon's counting argument

- Proof (counting):
$-B(n)=2^{2^{n}}=\#$ functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- \# circuits with n inputs + size s , is at most
 $n+3$ gate types 2 inputs per gate

Shannon's counting argument

- frustrating fact: almost all functions require huge formulas

Theorem (Shannon): With probability at least $1-o(1)$, a random function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ requires a formula of size $\Omega\left(2^{n} / \log n\right)$.

Shannon's counting argument

- Proof (counting):
$-B(n)=2^{2^{n}}=$ \# functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- \# formulas with n inputs + size s, is at most

$$
\begin{array}{ll}
\mathrm{F}(\mathrm{n}, \mathrm{~s}) \leq 4^{\mathrm{s}} 2^{\mathrm{s}}(\mathrm{n}+2)^{\mathrm{s}} & \begin{array}{l}
\mathrm{n}+2 \text { choices } \\
\text { per leaf }
\end{array} \\
4^{s} \text { binary trees with } s \\
\text { internal nodes }
\end{array} \begin{aligned}
& 2 \text { gate choices per } \\
& \text { internal node }
\end{aligned}
$$

April 8, 2004
CS151 Lecture 4
35

Shannon's counting argument

$$
\begin{aligned}
& -F\left(n, c 2^{n} / \log n\right)<(16 n)^{\left(c 2^{n} \log n\right)} \\
& <16^{\left(c c^{n} \log n\right)} 2^{\left(c 2^{n}\right)}=(1+o(1)) 2^{\left(c 2^{n}\right)} \\
& <o(1) 2^{2^{n}} \quad(\text { if } c \leq 1 / 2)
\end{aligned}
$$

- probability a random function has a formula of size $s=(1 / 2) 2^{n} / \log n$ is at most

$$
\mathrm{F}(\mathrm{n}, \mathrm{~s}) / \mathrm{B}(\mathrm{n})<\mathrm{o}(1)
$$

April 8, 2004
CS151 Lecture 4

Andreev function

- best lower bound for formulas:

Theorem (Andreev, Hastad '93): the Andreev function requires (\wedge, \vee, \neg))-formulas of size at least

$$
\Omega\left(\mathrm{n}^{3-\mathrm{o}(1)}\right) .
$$

Random restrictions

- key idea: given function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

restrict by ρ to get f_{ρ}

- ρ sets some variables to $0 / 1$, others remain free
- $R(n, \epsilon n)=$ set of restrictions that leave ϵn variables free
- Definition: $L(f)=$ smallest (\wedge, \vee, \neg) formula computing f (measured as leaf-size)

Random restrictions

- observation:

$$
E_{\rho \leftarrow R\left(n, \epsilon_{n}\right)}\left[L\left(f_{\rho}\right)\right] \leq \epsilon L(f)
$$

- each leaf survives with probability ϵ
- may shrink more..
- propogate constants

Lemma (Hastad 93): for all f

$$
\mathrm{E}_{\rho \leftarrow R(\mathrm{n}, \mathrm{en})}\left[\mathrm{L}\left(\mathrm{f}_{\mathrm{p}}\right)\right] \leq \mathrm{O}\left(\epsilon^{2-\mathrm{o}(1)} \mathrm{L}(\mathrm{f})\right)
$$

Aprir, 2004
CS151 Lecture 4

Hastad's shrinkage result

- Proof of theorem:
- Recall: there exists a function

$$
h:\{0,1\}^{\log n} \rightarrow\{0,1\}
$$

for which $L(h)>n / 2 \log \log n$.

- hardwire truth table of that function into y to get $A^{*}(x)$
- apply random restriction from

$$
R(n, m=2(\log n)(\ln \log n))
$$

to $A^{*}(x)$.

April 8, 2004
CS151 Lecture 4

The lower bound

- Proof of theorem (continued):
- probability given XOR is killed by restriction is probability that we "miss it" m times:

$$
\begin{gathered}
(1-(n / \log n) / n)^{m} \leq(1-1 / \log n)^{m} \\
\leq(1 / e)^{2 n} \log n \leq 1 / \log ^{2} n
\end{gathered}
$$

- probability even one of XORs is killed by restriction is at most:

$$
\log n\left(1 / \log ^{2} n\right)=1 / \log n<1 / 2
$$

The lower bound

- (1): probability even one of XORs is killed by restriction is at most:

$$
\log n\left(1 / \log ^{2} n\right)=1 / \log n<1 / 2
$$

- (2): by Markov:

$$
\operatorname{Pr}\left[L\left(A_{\rho}^{*}\right)>2 E_{\rho \leftarrow R(n, m)}\left[L\left(A_{\rho}^{*}\right)\right]\right]<1 / 2 .
$$

- Conclude: for some restriction ρ
- all XORs survive, and
- $L\left(A_{\rho}^{*}\right) \leq 2 \mathrm{E}_{\rho \leftarrow \mathrm{R}(\mathrm{n}, \mathrm{m})}\left[\mathrm{L}\left(\mathrm{A}_{\mathrm{\rho}}^{*}\right)\right]$

The lower bound

- Proof of theorem (continued):
- if all XORs survive, can restrict formula further
to compute hard function h
- may need to add \neg 's
$L(h)=\mathbf{n} / 2 \log \log n \leq L\left(A_{\rho}^{*}\right)$ $\leq 2 \mathrm{E}_{\rho \leftarrow R(n, m)}\left[L\left(A_{\rho}^{*}\right)\right] \leq \mathrm{O}\left((m / n)^{2-o(1)} L\left(A^{*}\right)\right)$ $\leq \mathrm{O}\left(((\log n)(\ln \log n) / n)^{2-o(1)} \mathrm{L}\left(\mathrm{A}^{*}\right)\right)$
- implies $\Omega\left(n^{3-0(1)}\right) \leq L\left(A^{*}\right) \leq L(A)$.

