CS151
Complexity Theory

Lecture 5
April 13, 2004

Introduction

Power from an unexpected source?

« we know P # EXP, which implies no poly-
time algorithm for Succinct CVAL

* poly-size Boolean circuits for Succinct
CVAL ??

April 8, 2004 CS151 Lecture 4

Introduction

...and the depths of our ignorance:

Does NP have linear-size, log-depth
Boolean circuits ??

April 8, 2004 CS151 Lecture 4

Outline

* Boolean circuits and formulae

« uniformity and advice

« the NC hierarchy and parallel computation
« the quest for circuit lower bounds

* a lower bound for formulae

April 8, 2004 CS151 Lecture 4

Boolean circuits

« circuit C /D\
— directed acyclic graph 0 0
—nodes: AND (O); OR (0)); 3/7\3/\
NOT (-); variables x; ol s
Xy Xy X3 . Xy

¢ C computes function f:{0,1}" - {0,1} in
natural way
—identify C with function f it computes

April 8, 2004 CS151 Lecture 4

Boolean circuits

* size = # gates
» depth =longest path from input to output
« formula (or expression): graph is a tree

« every function f:{0,1}" - {0,1} computable
by a circuit of size at most O(n2")
— AND of n literals for each x such that f(x) = 1
— OR of up to 2" such terms

April 8, 2004 CS151 Lecture 4




Circuit families

« circuit works for specific input length
e we're used to f:Y"— {0,1}
« circuit family : a circuit for each input

length C,, C,, Cg, ... =“{C.}"
« *{C,} computes f” iff for all x
C(x) = f(x)

“{C,} decides L", where L is the language
associated with f

April 8, 2004 CS151 Lecture 4

Connection to TMs

¢ TM M running in time t(n) decides
language L

» can build circuit family {C_} that decides L
—size of C, = O(t(n)?)
— Proof: CVAL construction

* Conclude: L O P implies family of
polynomial-size circuits that decides L

April 8, 2004 CS151 Lecture 4 8

Connection to TMs

» other direction?

¢ A poly-size circuit family:
- C, = (x, O~ x,) if M, halts
—-C,=(x, 0= x,) if M, loops

¢ decides (unary version of) HALT!
* 00pS...

April 8, 2004 CS151 Lecture 4

Uniformity

« Strange aspect of circuit family:
—can “encode” (potentially uncomputable)
information in family specification
« solution: uniformity — require specification
is simple to compute
— Definition: circuit family {C,)} is logspace
uniform iff TM M outputs C, on input 1" and
runs in O(log n) space

April 8, 2004 CS151 Lecture 4 10

Uniformity

Theorem: P = languages decidable by
logspace uniform, polynomial-size circuit
families {C,}.

 Proof:
— already saw (=)

—(0) on input X, generate Cy,, evaluate it and
accept iff output = 1

April 8, 2004 CS151 Lecture 4

1

TMs that take advice

« family {C,} without uniformity constraint is
called “non-uniform”

* regard “non-uniformity” as a limited
resource just like time, space, as follows:
—add read-only “advice” tape to TM M
— M “decides L with advice A(n)” iff

M(x, A(]x])) accepts = x O L
—note: A(n) depends only on |x|

April 8, 2004 CS151 Lecture 4 12




TMs that take advice

* Definition: TIME(t(n))/f(n) = the set of
those languages L for which:
—there exists A(n) s.t. |JA(n)| < f(n)
—TM M decides L with advice A(n)

¢ most important such class:

P/poly = 0O, TIME(nk)/nk

April 8, 2004 CS151 Lecture 4

13

TMs that take advice

Theorem: L 00 P/poly iff L decided by family
of (non-uniform) polynomial size circuits.

* Proof:

— (=) C, from CVAL construction; hardwire
advice A(n)

— () define A(n) = description of C,; on input X,
TM simulates C(x)

April 8, 2004 CS151 Lecture 4 14

Approach to P/NP

» Believe NP O P

— equivalent: “NP does not have uniform,
polynomial-size circuits”

» Even believe NP O P/poly

—equivalent: “NP (or, e.g. SAT) does not have
polynomial-size circuits”

—implies P # NP

— many believe: best hope for P # NP

April 8, 2004 CS151 Lecture 4

15

Parallelism

» uniform circuits allow refinement of
polynomial time:

depth = parallel time

J

size = parallel
work

April 8, 2004 CS151 Lecture 4 16

Parallelism

¢ the NC (“Nick’s Class”) Hierarchy (of
logspace uniform circuits):

NC, = O(logkn) depth, poly(n) size
NC = O, NC,
« captures “efficiently parallelizable
problems”

* not realistic? overly generous
» OK for proving non-parallelizable

April 8, 2004 CS151 Lecture 4

17

Matrix Multiplication

nxn nxn nxn
matrix A matrix B | = | matrix AB

e what is the parallel complexity of this
problem?

—work = poly(n)
—time = logk(n)? (which k?)

April 8, 2004 CS151 Lecture 4 18




Matrix Multiplication

¢ two details

— arithmetic matrix multiplication...

A=) B=(b) (AB);=Z, (aXby;
... Vs. Boolean matrix multiplication:

A=(a)B=(b) (AB);=0(a0by))

— single output bit: to make matrix multiplication
a language: on input A, B, (i, j) output (AB);;

April 8, 2004

CS151 Lecture 4 19

Matrix Multiplication

» Boolean Matrix Multiplication is in NC,

—level 1: compute n ANDS: &;, [ by
—next log n levels: tree of ORS

—n2 subtrees for all pairs (i, j)
— select correct one and output

April 8, 2004 CS151 Lecture 4

Boolean formulas and NC,

« Previous circuit is actually a formula. This
is no accident:

Theorem: L O NC, iff decidable by

polynomial-size uniform family of Boolean
formulas.

April 8, 2004 CS151 Lecture 4 21

Boolean formulas and NC,

* Proof:
— (=) convert NC, circuit into formula
« recursively:
O O
A=A D
« note: logspace transformation (stack depth
log n, stack record 1 bit — “left” or “right”)

April 8, 2004 CS151 Lecture 4

Boolean formulas and NC,

—(O) convert formula of size n into
formula of depth O(log n)

« note: size < 2derth 5o new formula has

poly(n) size 0
— T
key transformation O O
4 WIN ;o Cofn
S\ Ao
April 8, 2004 CS151 Lecture 4 23

Boolean formulas and NC,

— D any minimal subtree with size at least n/3
 implies size(D) < 2n/3

— define T(n) = maximum depth required for any
size n formula

—C,, Cy, D all size <2n/3
T(N) = T(2n/3) + 3

implies T(n) < O(log n)

April 8, 2004 CS151 Lecture 4




Relation to other classes

e Clearly NC C P

—recall P = uniform poly-size circuits
*NC,CL

* generating Cy
« converting to formula
* FVAL

April 8, 2004 CS151 Lecture 4

—on input x, compose logspace algorithms for:

25

NCvs. P

« can every efficient algorithm be efficiently
parallelized?

?
NC =P
« P-complete problems least-likely to be
parallelizable
— if P-complete problem is in NC, then P = NC
- Why?
—we use logspace reductions to show problem
P-complete; L in NC

April 8, 2004 CS151 Lecture 4 27

Relation to other classes

* NL € NC,: S-T-CONN O NC,
—given G = (V, E), vertices s, t
— A = adjacency matrix (with self-loops)

- (A?); ; = Liff path of length < 2 from node i to
node j

— (A"); ;= 1 iff path of length < n from node i to
node j

— compute with depth log n tree of Boolean
matrix multiplications, output entry s, t

—log? n depth total

April 8, 2004 CS151 Lecture 4

NCvs. P

« can every uniform, poly-size Boolean
circuit family be converted into a uniform,
poly-size Boolean formula family?

?
NC,= P

April 8, 2004 CS151 Lecture 4

Lower bounds

« Recall: “NP does not have polynomial-size
circuits” (NP O P/poly) implies P # NP

major goal: prove lower bounds on (non-

uniform) circuit size for problems in NP

— believe exponential

— super-polynomial enough for P # NP

— best bound known: 4.5n

—don’t even have super-polynomial bounds for
problems in NEXP

April 8, 2004

CS151 Lecture 4 29

Lower bounds

* |lots of work on lower bounds for restricted
classes of circuits

—we'll see two such lower bounds:
« formulas
* monotone circuits

April 8, 2004 CS151 Lecture 4




Shannon’s counting argument

« frustrating fact: almost all functions require
huge circuits

Theorem (Shannon): With probability at
least 1 — o(1), a random function

f{0,1}" - {0,1}
requires a circuit of size Q(2"/n).

April 8, 2004 CS151 Lecture 4 31

Shannon’s counting argument

 Proof (counting):
— B(n) = 22" = # functions :{0,1}" _ {0,1}
— # circuits with n inputs + size s, is at most

s gates
C(n, s) < ((n+3)s?)* =
n+3 gate types 2 inputs per gate
April 8, 2004 CS151 Lecture 4 32

Shannon’s counting argument

—C(n, c2"n) < ((2n)c222n/n2)c2"n)
< 0(1)22c2”
<o(1)2?" (if ¢ < %)

—probability a random function has a
circuit of size s = (¥2)2"/n is at most

C(n, s)/B(n) < o(1)

April 8, 2004 CS151 Lecture 4 33

Shannon’s counting argument

« frustrating fact: almost all functions require
huge formulas

Theorem (Shannon): With probability at
least 1 — o(1), a random function

f:{0,1}" - {0,1}
requires a formula of size Q(2"/log n).

April 8, 2004 CS151 Lecture 4 34

Shannon’s counting argument

¢ Proof (counting):
—B(n) = 22" = # functions f:{0,1}" — {0,1}
—# formulas with n inputs + size s, is at most

F(n, S) S/'4523(n+‘2)\3 n+2 choices
4s binary trees with ;\ per leaf

internal nodes 2 gate choices per

internal node

April 8, 2004 CS151 Lecture 4 35

Shannon’s counting argument

—F(n, c2"log n) < (16n)(02nllog n)
< 1662"0a M2 = (1 + 0(1))22"
<0(1)2%" (if ¢ < %)

—probability a random function has a

formula of size s = (*2)2"/log n is at
most

F(n, s)/B(n) < o(1)

April 8, 2004 CS151 Lecture 4 36




Andreev function

» best lower bound for formulas:

Theorem (Andreev, Hastad '93): the
Andreev function requires ([0,00,—)-formulas
of size at least

Q(n3ow),

April 8, 2004 CS151 Lecture 4 37

Andreev function

Yi

\
b -
ﬂ—/ log n copies;
— " n/log n bits each

the Andreev function A(x.y)
A:{0,1)2n - {0,1}

April 8, 2004 CS151 Lecture 4 38

Random restrictions

* key idea: given function
f{0,1}» - {0,1}
restrict by p to get f,

— p sets some variables to 0/1, others remain
free

* R(n, en) = set of restrictions that leave en
variables free

« Definition: L(f) = smallest (0,00,—) formula
computing f (measured as leaf-size)

April 8, 2004 CS151 Lecture 4 39

Random restrictions

* observation:
EpHR(n, en)[L(fp)] £ SL(f)
— each leaf survives with probability €
e may shrink more...
— propogate constants
Lemma (Hastad 93): for all f
Eo. re, enlL(f)] = O(e°ML(f))

April 8, 2004 CS151 Lecture 4 40

Hastad'’s shrinkage result

 Proof of theorem:
— Recall: there exists a function
h:{0,1}09n . {0,1}
for which L(h) > n/2loglog n.
— hardwire truth table of that function into y to
get A"(x)
— apply random restriction from
R(n, m = 2(log n)(In log n))
to A*(x).

April 8, 2004 CS151 Lecture 4 41

The lower bound

* Proof of theorem (continued):

— probability given XOR is killed by restriction is
probability that we “miss it” m times:

(1 - (n/log n)/n)™ < (1 — 1/log n)™
< (1/e)2nlogn< 1/log2n

— probability even one of XORs is killed by
restriction is at most:

log n(1/log?n) = 1/log n < %.

April 8, 2004 CS151 Lecture 4 42




The lower bound

— (2): probability even one of XORs is killed by
restriction is at most:

log n(1/log?n) = 1/log n < %.
—(2): by Markov:
Pr[ L(A*p) >2 Eka(n, m)[L(A*p)] ] < Y.

— Conclude: for some restriction p
« all XORs survive, and
s LA 2B, g, mlL(A)]

April 8, 2004 CS151 Lecture 4

43

The lower bound

 Proof of theorem (continued):

—if all XORs survive, can restrict formula further
to compute hard function h
* may need to add -'s

L(h) = N/2loglogn < L(A")
S 2B, e, mlL(A7)] < O((m/n)>°ML(A"))
< O( ((log n)(In log n)/N)2°@W L (A"))

—implies Q(n3°W) < L(A") < L(A).

April 8, 2004 CS151 Lecture 4 44




