
1

CS151
Complexity Theory

Lecture 5
April 13, 2004

April 8, 2004 CS151 Lecture 4 2

Introduction

Power from an unexpected source?

• we know P � EXP, which implies no poly-
time algorithm for Succinct CVAL

• poly-size Boolean circuits for Succinct
CVAL ??

April 8, 2004 CS151 Lecture 4 3

Introduction

…and the depths of our ignorance:

Does NP have linear-size, log-depth
Boolean circuits ??

April 8, 2004 CS151 Lecture 4 4

Outline

• Boolean circuits and formulae

• uniformity and advice

• the NC hierarchy and parallel computation

• the quest for circuit lower bounds

• a lower bound for formulae

April 8, 2004 CS151 Lecture 4 5

Boolean circuits

• C computes function f:{0,1}n → {0,1} in
natural way
– identify C with function f it computes

• circuit C
– directed acyclic graph

– nodes: AND (∧); OR (∨);
NOT (¬); variables xi

∨

∧

�� ��

∧

∨ ¬

�� � ��

∧

April 8, 2004 CS151 Lecture 4 6

Boolean circuits

• size = # gates
• depth = longest path from input to output
• formula (or expression): graph is a tree

• every function f:{0,1}n → {0,1} computable
by a circuit of size at most O(n2n)
– AND of n literals for each x such that f(x) = 1
– OR of up to 2n such terms

2

April 8, 2004 CS151 Lecture 4 7

Circuit families

• circuit works for specific input length
• we’re used to f:�*

� {0,1}

• circuit family : a circuit for each input
length C1, C2, C3, … = “{Cn}”

• “{Cn} computes f” iff for all x
C|x|(x) = f(x)

• “{Cn} decides L”, where L is the language
associated with f

April 8, 2004 CS151 Lecture 4 8

Connection to TMs

• TM M running in time t(n) decides
language L

• can build circuit family {Cn} that decides L
– size of Cn = O(t(n)2)

– Proof: CVAL construction

• Conclude: L ∈ P implies family of
polynomial-size circuits that decides L

April 8, 2004 CS151 Lecture 4 9

Connection to TMs

• other direction?

• A poly-size circuit family:
– Cn = (x1 ∨ ¬ x1) if Mn halts

– Cn = (x1 ∧ ¬ x1) if Mn loops

• decides (unary version of) HALT!
• oops…

April 8, 2004 CS151 Lecture 4 10

Uniformity

• Strange aspect of circuit family:
– can “encode” (potentially uncomputable)

information in family specification

• solution: uniformity – require specification
is simple to compute
– Definition: circuit family {Cn} is logspace

uniform iff TM M outputs Cn on input 1n and
runs in O(log n) space

April 8, 2004 CS151 Lecture 4 11

Uniformity

Theorem: P = languages decidable by
logspace uniform, polynomial-size circuit
families {Cn}.

• Proof:
– already saw (�)
– (⇐) on input x, generate C|x|, evaluate it and

accept iff output = 1

April 8, 2004 CS151 Lecture 4 12

TMs that take advice

• family {Cn} without uniformity constraint is
called “non-uniform”

• regard “non-uniformity” as a limited
resource just like time, space, as follows:
– add read-only “advice” tape to TM M

– M “decides L with advice A(n)” iff

M(x, A(|x|)) accepts ⇔ x ∈ L
– note: A(n) depends only on |x|

3

April 8, 2004 CS151 Lecture 4 13

TMs that take advice

• Definition: TIME(t(n))/f(n) = the set of
those languages L for which:

– there exists A(n) s.t. |A(n)| � f(n)
– TM M decides L with advice A(n)

• most important such class:

P/poly = ∪∪∪∪k TIME(nk)/nk

April 8, 2004 CS151 Lecture 4 14

TMs that take advice

Theorem: L ∈ P/poly iff L decided by family
of (non-uniform) polynomial size circuits.

• Proof:
– (�) Cn from CVAL construction; hardwire

advice A(n)

– (⇐) define A(n) = description of Cn; on input x,
TM simulates Cn(x)

April 8, 2004 CS151 Lecture 4 15

Approach to P/NP

• Believe NP ⊄ P
– equivalent: “NP does not have uniform,

polynomial-size circuits”

• Even believe NP ⊄ P/poly
– equivalent: “NP (or, e.g. SAT) does not have

polynomial-size circuits”
– implies P � NP
– many believe: best hope for P � NP

April 8, 2004 CS151 Lecture 4 16

Parallelism

• uniform circuits allow refinement of
polynomial time:

��	�
���

������≡ ��	��������� �

�����≡ ��	������
� �	�

April 8, 2004 CS151 Lecture 4 17

Parallelism

• the NC (“Nick’s Class”) Hierarchy (of
logspace uniform circuits):

NCk = O(logk n) depth, poly(n) size

NC = ∪∪∪∪k NCk

• captures “efficiently parallelizable
problems”

• not realistic? overly generous
• OK for proving non-parallelizable

April 8, 2004 CS151 Lecture 4 18

Matrix Multiplication

• what is the parallel complexity of this
problem?
– work = poly(n)

– time = logk(n)? (which k?)

������
� ��	����

������
� ��	���� �

������
� ��	���� �

4

April 8, 2004 CS151 Lecture 4 19

Matrix Multiplication

• two details
– arithmetic matrix multiplication…

A = (ai, k) B = (bk, j) (AB)i,j = �k (ai,k x bk, j)
… vs. Boolean matrix multiplication:

A = (ai, k) B = (bk, j) (AB)i,j = ∨k (ai,k ∧ bk, j)

– single output bit: to make matrix multiplication
a language: on input A, B, (i, j) output (AB)i,j

April 8, 2004 CS151 Lecture 4 20

Matrix Multiplication

• Boolean Matrix Multiplication is in NC1

– level 1: compute n ANDS: ai,k ∧ bk, j

– next log n levels: tree of ORS

– n2 subtrees for all pairs (i, j)

– select correct one and output

April 8, 2004 CS151 Lecture 4 21

Boolean formulas and NC1

• Previous circuit is actually a formula. This
is no accident:

Theorem: L ∈ NC1 iff decidable by
polynomial-size uniform family of Boolean
formulas.

April 8, 2004 CS151 Lecture 4 22

Boolean formulas and NC1

• Proof:
– (�) convert NC1 circuit into formula

• recursively:

• note: logspace transformation (stack depth
log n, stack record 1 bit – “left” or “right”)

∧ ∧

�

April 8, 2004 CS151 Lecture 4 23

Boolean formulas and NC1

– (⇐) convert formula of size n into
formula of depth O(log n)
• note: size � 2depth, so new formula has

poly(n) size

�

�

�

�

�

�

∨

∧ ∧

¬

�

key transformation

April 8, 2004 CS151 Lecture 4 24

Boolean formulas and NC1

– D any minimal subtree with size at least n/3
• implies size(D) � 2n/3

– define T(n) = maximum depth required for any
size n formula

– C1, C0, D all size � 2n/3

T(n) � T(2n/3) + 3

implies T(n) � O(log n)

5

April 8, 2004 CS151 Lecture 4 25

Relation to other classes

• Clearly NC � P
– recall P ≡ uniform poly-size circuits

• NC1 � L
– on input x, compose logspace algorithms for:

• generating C|x|

• converting to formula
• FVAL

April 8, 2004 CS151 Lecture 4 26

Relation to other classes

• NL � NC2: S-T-CONN ∈ NC2

– given G = (V, E), vertices s, t
– A = adjacency matrix (with self-loops)
– (A2)i, j = 1 iff path of length � 2 from node i to

node j
– (An)i, j = 1 iff path of length � n from node i to

node j
– compute with depth log n tree of Boolean

matrix multiplications, output entry s, t
– log2 n depth total

April 8, 2004 CS151 Lecture 4 27

NC vs. P

• can every efficient algorithm be efficiently
parallelized?

NC = P
• P-complete problems least-likely to be

parallelizable
– if P-complete problem is in NC, then P = NC
– Why?
– we use logspace reductions to show problem

P-complete; L in NC

�

April 8, 2004 CS151 Lecture 4 28

NC vs. P

• can every uniform, poly-size Boolean
circuit family be converted into a uniform,
poly-size Boolean formula family?

NC1 = P
�

April 8, 2004 CS151 Lecture 4 29

Lower bounds

• Recall: “NP does not have polynomial-size
circuits” (NP ⊄ P/poly) implies P � NP

• major goal: prove lower bounds on (non-
uniform) circuit size for problems in NP
– believe exponential

– super-polynomial enough for P � NP
– best bound known: 4.5n
– don’t even have super-polynomial bounds for

problems in NEXP
April 8, 2004 CS151 Lecture 4 30

Lower bounds

• lots of work on lower bounds for restricted
classes of circuits

– we’ll see two such lower bounds:
• formulas
• monotone circuits

6

April 8, 2004 CS151 Lecture 4 31

Shannon’s counting argument

• frustrating fact: almost all functions require
huge circuits

Theorem (Shannon): With probability at
least 1 – o(1), a random function

f:{0,1}n → {0,1}
requires a circuit of size �(2n/n).

April 8, 2004 CS151 Lecture 4 32

Shannon’s counting argument

• Proof (counting):
– B(n) = 22n

= # functions f:{0,1}n → {0,1}
– # circuits with n inputs + size s, is at most

C(n, s) � ((n+3)s2)s
�� ����

�!�� �����"��� �����
�����	� ���

April 8, 2004 CS151 Lecture 4 33

Shannon’s counting argument

– C(n, c2n/n) < ((2n)c222n/n2)(c2n/n)

< o(1)22c2n

< o(1)22n
(if c � ½)

– probability a random function has a
circuit of size s = (½)2n/n is at most

C(n, s)/B(n) < o(1)

April 8, 2004 CS151 Lecture 4 34

Shannon’s counting argument

• frustrating fact: almost all functions require
huge formulas

Theorem (Shannon): With probability at
least 1 – o(1), a random function

f:{0,1}n → {0,1}
requires a formula of size �(2n/log n).

April 8, 2004 CS151 Lecture 4 35

Shannon’s counting argument

• Proof (counting):
– B(n) = 22n

= # functions f:{0,1}n → {0,1}
– # formulas with n inputs + size s, is at most

F(n, s) � 4s2s(n+2)s

#� $���	"��	����� ������
����	��������� �� ��������������	�

����	��������

�!����������
��	����%

April 8, 2004 CS151 Lecture 4 36

Shannon’s counting argument

– F(n, c2n/log n) < (16n)(c2n/log n)

< 16(c2n/log n)2(c2n) = (1 + o(1))2(c2n)

< o(1)22n
(if c � ½)

– probability a random function has a
formula of size s = (½)2n/log n is at
most

F(n, s)/B(n) < o(1)

7

April 8, 2004 CS151 Lecture 4 37

Andreev function

• best lower bound for formulas:

Theorem (Andreev, Hastad ‘93): the
Andreev function requires (∧,∨,¬)-formulas
of size at least

�(n3-o(1)).

April 8, 2004 CS151 Lecture 4 38

Andreev function

�������	

"�

�&$�����	�� �"
' () ' ()

��*

�� �� ������+����
�,�� �� $��������

����� ��	��- %
�������� .�/"0����������������
� 12�/�3���→ 2�/�3

April 8, 2004 CS151 Lecture 4 39

Random restrictions

• key idea: given function
f:{0,1}n → {0,1}

restrict by � to get f�
– � sets some variables to 0/1, others remain

free

• R(n, �n) = set of restrictions that leave �n
variables free

• Definition: L(f) = smallest (∧,∨,¬) formula
computing f (measured as leaf-size)

April 8, 2004 CS151 Lecture 4 40

Random restrictions

• observation:
E�←R(n, �n)[L(f�)] � �L(f)

– each leaf survives with probability �

• may shrink more…
– propogate constants

Lemma (Hastad 93): for all f

E�←R(n, �n)[L(f�)] � O(�2-o(1)L(f))

April 8, 2004 CS151 Lecture 4 41

Hastad’s shrinkage result

• Proof of theorem:
– Recall: there exists a function

h:{0,1}log n →{0,1}
for which L(h) > n/2loglog n.

– hardwire truth table of that function into y to
get A*(x)

– apply random restriction from
R(n, m = 2(log n)(ln log n))

to A*(x).

April 8, 2004 CS151 Lecture 4 42

The lower bound

• Proof of theorem (continued):
– probability given XOR is killed by restriction is

probability that we “miss it” m times:

(1 – (n/log n)/n)m � (1 – 1/log n)m

� (1/e)2ln log n � 1/log2n
– probability even one of XORs is killed by

restriction is at most:
log n(1/log2n) = 1/log n < ½.

8

April 8, 2004 CS151 Lecture 4 43

The lower bound

– (1): probability even one of XORs is killed by
restriction is at most:

log n(1/log2n) = 1/log n < ½.

– (2): by Markov:
Pr[L(A*

�) > 2 E�←R(n, m)[L(A*
�)]] < ½.

– Conclude: for some restriction �
• all XORs survive, and
• L(A*

�) � 2 E�←R(n, m)[L(A*
�)]

April 8, 2004 CS151 Lecture 4 44

The lower bound

• Proof of theorem (continued):
– if all XORs survive, can restrict formula further

to compute hard function h
• may need to add ¬’s

L(h) = n/2loglogn � L(A*
�)

� 2E�←R(n, m)[L(A*
�)] � O((m/n)2-o(1)L(A*))

� O(((log n)(ln log n)/n)2-o(1) L(A*))

– implies �(n3-o(1)) � L(A*) � L(A).

