
1

CS151
Complexity Theory

Lecture 4
April 8, 2004

April 8, 2004 CS151 Lecture 4 2

Introduction

• cover up nodes with c colors
• promise: never color “arrow” same as “blank”

• determine which kind of tree in poly(n, c) steps?

������ ������

������
�

A puzzle:
two kinds
of trees

April 8, 2004 CS151 Lecture 4 3

A puzzle

������ ������

������
�

April 8, 2004 CS151 Lecture 4 4

A puzzle

������ ������

������
�

April 8, 2004 CS151 Lecture 4 5

Introduction
• Ideas

– depth-first-search; stop if see
– how many times may we see a given “arrow

color”?
• at most n+1

– pruning rule?
• if see a color > n+1 times, it can’t be an

arrow node; prune
– # nodes visited before know answer?

• at most c(n+2)

April 8, 2004 CS151 Lecture 4 6

Outline

• sparse languages and NP

• nondeterminism applied to space

• reachability

• Savitch’s Theorem

• Immerman/Szelepcsényi Theorem

2

April 8, 2004 CS151 Lecture 4 7

Sparse languages and NP

• We often say NP-compete languages are
“hard”

• More accurate: NP-complete languages
are “expressive”
– lots of languages reduce to them

April 8, 2004 CS151 Lecture 4 8

Sparse languages and NP

• Sparse language: one that contains at
most poly(n) strings of length � n

• not very expressive – can we show this
cannot be NP-complete (assuming P �
NP) ?
– yes: Mahaney ’82 (homework problem)

• Unary language: subset of 1* (at most n
strings of length � n)

April 8, 2004 CS151 Lecture 4 9

Sparse languages and NP

Theorem (Berman ’78): if a unary language
is NP-complete then P = NP.

• Proof:
– let U ⊂ 1* be a unary language and assume

SAT � U via reduction R

– �(x1,x2,…,xn) instance of SAT

April 8, 2004 CS151 Lecture 4 10

Sparse languages and NP

– self-reduction tree for �:

������

	
��������

	
�������	
�������

	
�� ��� 	
�����

�
�
��

������������������ ���

April 8, 2004 CS151 Lecture 4 11

Sparse languages and NP

• Applying reduction R:

������

�
	
���������

�
	
���������
	
��������

�
	
�� ���� �
	
������

�
�
��

������������������ ���

April 8, 2004 CS151 Lecture 4 12

Sparse languages and NP

• on input of length � |�(x1,x2,…,xn)|, R
produces string of length � p(n)

• R’s different outputs are “colors”
– 1 color for strings not in 1*

– at most p(n) other colors

• puzzle solution � can solve SAT in
poly(p(n)+1, n+1) = poly(n) time!

3

April 8, 2004 CS151 Lecture 4 13

Nondeterministic space

• NSPACE(f(n)) = languages decidable by a
multi-tape NTM that touches at most f(n)
squares of its work tapes along any
computation path, where n is the input
length, and f :N� N

April 8, 2004 CS151 Lecture 4 14

Nondeterministic space

• Robust nondeterministic space classes:

NL = NSPACE(log n)

NPSPACE = ∪∪∪∪k NSPACE(nk)

April 8, 2004 CS151 Lecture 4 15

Reachability

• Recall: at most nk configurations of given
NTM M running in NSPACE(log n).

���������������

������� �������

�∈�

������� �������

�∉�
• easy to
determine if C
yields C’ in one
step
• configuration
graph for M on
input x:

April 8, 2004 CS151 Lecture 4 16

Reachability

• Conclude: NL ⊂ P
– and NPSPACE ⊂ EXP

• S-T-Connectivity (STCONN): given
directed graph G = (V, E) and nodes s, t, is
there a path from s to t

Theorem: STCONN is NL-complete under
logspace reductions.

April 8, 2004 CS151 Lecture 4 17

Reachability

• Proof:
– in NL: guess path from s to t one node at a

time

– given L ∈ NL decided by NTM M construct
configuration graph for M on input x (can be
done in logspace)

– s = starting configuration; t = qaccept

April 8, 2004 CS151 Lecture 4 18

Two startling theorems

• Strongly believe P � NP
• nondeterminism seems to add enormous

power
• for space: Savitch ‘70:

NPSPACE = PSPACE
and

NL ⊂ SPACE(log2n)

4

April 8, 2004 CS151 Lecture 4 19

Two startling theorems

• Strongly believe NP � coNP
• seems impossible to convert existential

into universal

• for space: Immerman/Szelepscényi ’87/’88:

NL = coNL

April 8, 2004 CS151 Lecture 4 20

Savitch’s Theorem

Theorem: STCONN ∈ SPACE(log2 n)

• Corollary: NL ⊂ SPACE(log2n)

• Corollary: NPSPACE = PSPACE

April 8, 2004 CS151 Lecture 4 21

Proof of Theorem

– input: G = (V, E), two nodes s and t

– recursive algorithm:

/* return true iff path from x to y of length at most 2i */

PATH(x, y, i)
if i = 0 return ((x, y) ∈ E) /* base case */
for z in V

if PATH(x, z, i-1) and PATH(z, y, i-1) return(true);
return(false);
end

April 8, 2004 CS151 Lecture 4 22

Proof of Theorem

– answer to STCONN: PATH(s, t, log n)

– space used:
• (depth of recursion) x (size of “stack record”)

– depth = log n
– claim stack record: “(x, y, i)” sufficient

• size O(log n)

– when return from PATH(a, b, i) can figure out
what to do next from record (a, b, i) and
previous record

April 8, 2004 CS151 Lecture 4 23

I-S Theorem

Theorem: ST-NON-CONN ∈ NL
• Proof: slightly tricky setup:

– input: G = (V, E), two nodes s, t

�

�

 ���!

�

�

 �"!

April 8, 2004 CS151 Lecture 4 24

I-S Theorem

– want nondeterministic procedure using only
O(log n) space with behavior:

�������

 ���!
���#�

�������

 �"!
���#�

5

April 8, 2004 CS151 Lecture 4 25

I-S Theorem

– observation: given count of # nodes
reachable from s, can solve problem

• for each v ∈ V, guess if it is reachable
• if yes, guess path from s to v

– if guess doesn’t lead to v, reject.
– if v = t, reject.
– else counter++

• if counter = count accept

April 8, 2004 CS151 Lecture 4 26

I-S Theorem

– every computation path has sequence of
guesses…

– only way computation path can lead to
accept:
• correctly guessed reachable/unreachable

for each node v
• correctly guessed path from s to v for each

reachable node v
• saw all reachable nodes
• t not among reachable nodes

April 8, 2004 CS151 Lecture 4 27

I-S Theorem

– R(i) = # nodes reachable from s in at most i
steps

– R(0) = 1: node s

– we will compute R(i+1) from R(i) using
O(log n) space and nondeterminism

– computation paths with “bad guesses” all lead
to reject

April 8, 2004 CS151 Lecture 4 28

I-S Theorem

– Outline: in n phases, compute

R(1), R(2), R(3), … R(n)
– only O(log n) bits of storage between phases

– in end, lots of computation paths that lead to
reject

– only computation paths that survive have
computed correct value of R(n)

– apply observation.

April 8, 2004 CS151 Lecture 4 29

I-S Theorem

– computing R(i+1) from R(i):

– Initialize R(i+1) = 0
– For each v ∈ V, guess if v reachable from s in

at most i+1 steps

�
���$��
���$�%

April 8, 2004 CS151 Lecture 4 30

I-S Theorem

– if “yes”, guess path from s to v of at most i+1
steps. Increment R(i+1)

– if “no”, visit R(i) nodes reachable in at most i
steps, check that none is v or adjacent to v

• for u ∈ V guess if reachable in � i steps;
guess path to u; counter++

• KEY: if counter � R(i), reject
• at this point: can be sure v not reachable

6

April 8, 2004 CS151 Lecture 4 31

I-S Theorem

• correctness of procedure:
• two types of errors we can make
• (1) might guess v is reachable in at most

i+1 steps when it is not
– won’t be able to guess path from s to v of

correct length, so we will reject.

 ����! �����"�����"�

April 8, 2004 CS151 Lecture 4 32

I-S Theorem
• (2) might guess v is not reachable in at

most i+1 steps when it is
– then must not see v or neighbor of v while

visiting nodes reachable in i steps.
– but forced to visit R(i) distinct nodes

– therefore must try to visit node v that is not
reachable in � i steps

– won’t be able to guess path from s to v of
correct length, so we will reject.

 ����! �����"�����"�

April 8, 2004 CS151 Lecture 4 33

Summary

• unary languages not NP-complete unless
P = NP
– true for sparse languages as well (homework)

• nondeterministic space classes

NL and NPSPACE

• ST-CONN NL-complete
April 8, 2004 CS151 Lecture 4 34

Summary

• Savitch: NPSPACE = PSPACE
– Proof: ST-CONN ∈ SPACE(log2 n)
– open question:

NL = L?

• Immerman/Szelepcsényi : NL = coNL
– Proof: ST-NON-CONN ∈ NL

