

Introduction

A motivating question:

- Can computers replace mathematicians?
$\mathrm{L}=\left\{\left(\mathrm{x}, 1^{\mathrm{k}}\right):\right.$ statement x has a proof of
length at most k$\}$

Introduction

- This lecture:

Nondeterminism

- Recall deterministic TM
- Q finite set of states
$-\sum$ alphabet including blank: "_"
$-\mathbf{q}_{\text {start }}, \mathbf{q}_{\text {accept }}, \mathbf{q}_{\text {reject }}$ in Q
- transition function:

$$
\bar{\delta}: Q \times \Sigma \rightarrow Q \times \sum \times\{L, R,-\}
$$

Nondeterminism

- nondeterministic Turing Machine:
- \mathbf{Q} finite set of states
$-\sum$ alphabet including blank: "_"
$-\mathbf{q}_{\text {start }}, \mathbf{q}_{\text {accept }}, \mathbf{q}_{\text {reject }}$ in Q
- transition relation

$$
\Delta \subset(Q \times \Sigma) \times\left(Q \times \sum \times\{L, R,-\}\right)
$$

- given current state and symbol scanned, several choices of what to do next.

Nondeterminism

- deterministic TM: given current configuration, unique next configuration

- nondeterministic TM: given current configuration, several possible next configurations
April 6, 2004
CS151 Lecture 3
6

Nondeterminism

- all paths terminate
- time used: maximum length of paths from root
- space used: maximum \# of work tape squares touched on any path from root

Nondeterminism

- $\operatorname{NTIME(f(n))=}$ languages decidable by a Nondeterminism
- Focus on time classes first: multi-tape NTM that runs for at most $\mathrm{f}(\mathrm{n})$ steps on any computation path, where n is the input length, and $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$
- NSPACE(f(n)) = languages decidable by a multi-tape NTM that touches at most $\mathrm{f}(\mathrm{n})$ squares of its work tapes along any computation path, where n is the input length, and $\mathrm{f}: \mathbf{N} \rightarrow \mathbf{N}$
April 6, 2004 CS151 Lecture 3 9

Poly-time verifiers

Poly-time verifiers

- Example: 3SAT expressible as 3SAT $=\{\varphi: \varphi$ is a 3-CNF formula for which \exists assignment A for which $(\varphi, A) \in R\}$ $R=\{(\varphi, A): A$ is a sat. assign. for $\varphi\}$
- satisfying assignment A is a "witness" of the satisfiability of φ (it "certifies" satisfiability of φ)
$-R$ is decidable in poly-time

Poly-time verifiers

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

Proof: (\Leftarrow) give poly-time NTM deciding L

Poly-time verifiers

Proof: (\Rightarrow) given $L \in N P$, describe L as:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

-L is decided by NTM M running in time n^{k} - define the language
$R=\{(x, y): y$ is an accepting computation history of M on input x$\}$

- check: accepting history has length $\leq|x|^{k}$
- check: R is decidable in polynomial time
- check: M accepts x iff $\exists y,|y| \leq|x|^{k},(x, y) \in R$

April 6, 2004
CS151 Lecture 3
14

Why NP?

- Why not EXP?
- too strong!
-important problems not complete.
pains huge number of natl does y meet requirements?
- many problems have form:

$$
L=\{x \mid \exists y \text { s.t. }(x, y) \in R\}
$$

April 6, 2004

Relationships between classes

- Easy: $\mathbf{P} \subset N P, E X P \subset N E X P$
- TM special case of NTM
- Recall: $L \in$ NP iff expressible as

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.
$$

- NP \subset PSPACE (try all possible y)
- The central question:

$$
\mathbf{P} \stackrel{?}{=} \mathrm{NP}
$$

recognizing a solution vs. finding a solution

April 6, 2004
CS151 Lecture 3 17

NP-completeness

- Circuit SAT: given a Boolean circuit (gates \wedge, \vee, \neg), with variables $y_{1}, y_{2}, \ldots, y_{m}$ is there some assignment that makes it output 1?

Theorem: Circuit SAT is NP-complete.

- Proof:
- clearly in NP

April 6, 2004
CS151 Lecture 3
18

NEXP-completeness

- Succinct Circuit SAT: given a succinctly encoded Boolean circuit (gates \wedge, \vee, \neg), with variables $y_{1}, y_{2}, \ldots, y_{m}$ is there some assignment that makes it output 1?
Theorem: Succinct Circuit SAT is NEXPcomplete.
- Proof:
- same trick as for Succinct CVAL EXPcomplete.

Complement classes

- In general, if C is a complexity class
- co-C is the complement class, containing all complements of languages in C
$-\mathrm{L} \in \mathrm{C}$ implies $\left(\mathrm{\Sigma}^{*}-\mathrm{L}\right) \in \mathrm{co}-\mathrm{C}$
$-\left(\Sigma^{*}-\mathrm{L}\right) \in \mathrm{C}$ implies $\mathrm{L} \in \mathrm{co}-\mathrm{C}$
- Some classes closed under complement:
-e.g. co-P = P
April 6, 2004
CS151 Lecture 3
21

coNP

- "proof system" interpretation:
- Recall: $L \in$ NP iff expressible as

$$
\begin{aligned}
& \mathrm{L}=\{x|\exists \mathrm{y},|\mathrm{y}| \leq|x| \mathrm{k},(\mathrm{x}, \mathrm{y}) \in \underbrace{\mathrm{R}}_{\text {"proof" }}\} \\
& \text { "proof } \\
& \text { verifier }
\end{aligned}
$$

- languages in NP have "short proofs"
- coNP captures (in its complete problems) problems least likely to have "short proofs". - e.g., UNSAT is coNP-complete

NTIME Hierarchy Theorem

Theorem (Nondeterministic Time Hierarchy Theorem):
For every proper complexity function $f(n) \geq$ n , and $\mathrm{g}(\mathrm{n})=\omega(\mathrm{f}(\mathrm{n}+1))$,

$$
\operatorname{NTIME(f(n))} \subsetneq \operatorname{NTIME(g(n)).~}
$$

NTIME Hierarchy Theorem

- Let $\mathrm{t}(\mathrm{n})$ be large enough so that can decide if NTM M running in time $f(n)$

NTIME Hierarchy Theorem

- For k in [n...t(n)] can to do same as $M_{i}\left(1^{k+1}\right)$ on input 1^{k}

NTIME Hierarchy Theorem

- Did we diagonalize against M_{i} ?
- if M_{i} simulates D then:

- equality along all arrows.
- contradiction.

NTIME Hierarchy Theorem

- General scheme:
- interval [1...t(1)] kills M_{1}
- interval $[t(1) \ldots t(t(1))]$ kills M_{2}
- interval $\left[\mathrm{t}^{\mathrm{t}-1}(1) \ldots \mathrm{t}^{\mathrm{t}}(1)\right]$ kills M_{i}
- Running time of D on $1^{n}: f(n+1)+$ time to compute interval containing n
- conclude D in NTIME(g(n))

April 6, 2004
CS151 Lecture 3 31

Ladner's Theorem

Theorem (Ladner): If $\mathbf{P} \neq \mathbf{N P}$, then there exists $L \in \mathbf{N P}$ that is neither in \mathbf{P} nor NPcomplete.

- Proof: "lazy diagonalization"
- deal with similar problem as in NTIME Hierarchy proof
- Can enumerate (TMs deciding) all languages in \mathbf{P}.
- enumerate TMs so that each machine appears infinitely often
- add clock to M_{i} so that it runs in at most n^{i} steps

Ladner's Theorem

Assuming $\mathbf{P} \neq \mathbf{N P}$, what does the world (inside NP) look like?

April 6, 2004
CS151 Lecture 3

Ladner's Theorem	
- Can enumerate (TMs deciding) all	
languages in \mathbf{P}.	
- enumerate TMs so that each machine	
appears infinitely often	
- add clock to M_{i} so that it runs in at most n^{i}	
steps	

Ladner's Theorem

- Can enumerate (TMs deciding) all NPcomplete languages.
- enumerate TMs f_{i} computing all polynomialtime functions
- machine N_{i} decides language SAT reduces to via f_{i} if f_{i} is reduction, else SAT (details omitted...)

Ladner's Theorem

Ladner's Theorem

- Bottom half, assuming $\mathbf{P} \neq \mathbf{N P}$:

Ladner's Theorem

- General scheme: $f(n)$ slowly increasing function

- $f(|x|)$ even: answer SAT(x)
- $\mathrm{f}(|\mathrm{x}|)$ odd: answer TRIV(x)
- notice choice only depends on length of input... that's OK

April 6, 2004

Ladner's Theorem

- $1^{\text {st }}$ attempt to define $f(n)$
- "eager $f(n)$ ": increase at $1^{\text {st }}$ opportunity
- Inductive definition: $f(0)=0 ; f(n)=$
- if $f(n-1)=2 i$, trying to kill M_{i}
- if $\exists \mathrm{z}<1^{\mathrm{n}}$ s.t. $\mathrm{M}_{\mathrm{i}}(\mathrm{z}) \neq$ SAT (z), then $\mathrm{f}(\mathrm{n})=$ $f(n-1)+1$; else $f(n)=f(n-1)$
- if $f(n-1)=2 i+1$, trying to kill N_{i}
- if $\exists \mathrm{z}<1^{\mathrm{n}}$ s.t. $\mathrm{N}_{\mathrm{i}}(\mathrm{z}) \neq \operatorname{TRIV}(\mathrm{z})$, then $\mathrm{f}(\mathrm{n})=$ $f(n-1)+1$; else $f(n)=f(n-1)$

Ladner's Theorem

- Problem: eager $f(n)$ too difficult to compute
- on input of length n,
- look at all strings z of length $<n$
- compute SAT(z) or $\mathrm{N}_{\mathrm{i}}(\mathrm{z})$ for each !
- Solution: "lazy" f(n)
- on input of length n, only run for $2 n$ steps
- if enough time to see should increase (over f(n-1)), do it; else, stay same
- (alternate proof: give explicit $f(n)$ that grows slowly enough...)
April 6, 2004
CS151 Lecture 3

Ladner's Theorem

- Inductive definition of $f(n)$

$$
-f(0)=0
$$

$-f(n)$: for n steps compute $f(0), f(1), f(2), \ldots$

April 6, 2004

Ladner's Theorem

- if $k=2 \mathrm{i}$:
- for n steps try (lex order) to find z s.t. $\operatorname{SAT}(z) \neq M_{i}(z)$ and $f(|z|)$ even
- if found, $f(n)=f(n-1)+1$ else $f(n-1)$
- if $k=2 i+1$:
- for n steps try (lex order) to find z s.t. $\operatorname{TRIV}(z) \neq N_{i}(z)$ and $f(|z|)$ odd
- if found, $f(n)=f(n-1)+1$ else $f(n-1)$
- $L \in \mathbf{N P}$ since $f(|x|)$ can be computed in O(n) time

Ladner's Theorem

- suppose M_{i} decides L

Summary

- nondeterminism
- nondeterministic time classes:
NP, coNP, NEXP
- NTIME Hierarchy Theorem:

$$
\text { NP } \neq \text { NEXP }
$$

- major open questions:

$$
P \stackrel{?}{=} N P \quad N P \stackrel{?}{=} \operatorname{coNP}
$$

April 6, 2004
CS151 Lecture 3
48
Summary

- NP-"intermediate" problems
- technique: delayed diagonalization
- complete problems:
- circuit SAT is NP-complete
- UNSAT is coNP-complete
- succinct circuit SAT is NEXP-complete
April 6,2004

