CS151
Complexity Theory

Lecture 2
April 1, 2004

Time and Space

A motivating question:
— Boolean formula with n nodes
— evaluate using O(log n) space?
q « depth-first traversal

L requires storing

g intermediate values
s « idea: short-circuit
1 0o 1 ANDs and ORs when
possible
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Time and Space

« Can we evaluate an n node Boolean
circuit using O(log n) space?

April 1, 2004 CS151 Lecture 2

Time and Space

¢ Recall:
— TIME(f(n)), SPACE(f(n))
* Questions:
—how are these classes related to each other?

—how do we define robust time and space
classes?

— what problems are contained in these
classes? complete for these classes?
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Outline

¢ Why big-oh? Linear Speedup Theorem
¢ Hierarchy Theorems

¢ Robust Time and Space Classes

¢ Relationships between classes

¢ Some complete problems

April 1, 2004 CS151 Lecture 2

Linear Speedup

Theorem: Suppose TM M decides language L in
time f(n). Then for any € > 0, there exists TM M’
that decides L in time

ef(n) + n + 2.
* Proof:
— simple idea: increase “word length”
— M’ will have

» one more tape than M
» m-tuples of symbols of M

Znew = zuld D zu\dm
+ many more states
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Linear Speedup

e part 1: compress input onto fresh tape

lafofafofblalafaf [ [ ]

V=

‘aba‘bba‘aa‘ ‘ ‘
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Linear Speedup

e part 2: simulate M, m steps at a time
‘b‘b‘a‘a a‘b‘a‘a‘a‘b‘,.,
m 1] m
‘ abb ‘ aab ‘ aba ‘ aab ‘ aba ‘

-4 (L,R,R,L) steps to read relevant symbols,
“remember” in state

—2(L,RorR,L) to make M’s changes
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Linear Speedup

* accounting:
— part 1 (copying): n + 2 steps
— part 2 (simulation): 6 (f(n)/m)
— setm = 6/e
— total: ef(n) +n + 2

Theorem: Suppose TM M decides language L in
space f(n). Then for any € > 0, there exists TM
M’ that decides L in space €ef(n) + 2.

* Proof: same.
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Time and Space

» Moral: big-oh notation necessary given our
model of computation

— Recall: f(n) = O(g(n)) if there exists ¢ such that f(n) < c
g(n) for all sufficiently large n.

— TM model incapable of making distinctions between
time and space usage that differs by a constant.
* In general: interested in course distinctions not
affected by model
— e.g. simulation of k-string TM running in time f(n) by
single-string TM running in time O(f(n)?)
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Hierarchy Theorems

» Does genuinely more time permit us to
decide new languages?

» how can we construct a language L that is
not in TIME(f(n))...

 idea: same as “HALT undecidable”
diagonalization and simulation
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Recall proof for Halting Problem

inputs ?l\(;lxx)'
. ——— does M
Turing halt on
Machines X?

The existence of
H which tells us
yes/no for each
box allows us to
constructa TM H’
H:[n]y[n]v][v[n]y] |thatcannot be in
the table.
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Time Hierarchy Theorem
box (M, x): does M
accept x in time f(n)?

inputs

Turing
Machines * TM SIM tells us
yes/no for each box
in time g(n)

« rows include all of
TIME(f(n))

« construct TM D
running in time g(2n)
that is not in table

D: [n]Y[n]Y[y[n]Y]
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Time Hierarchy Theorem
Theorem (Time Hierarchy Theorem): For

every proper complexity function f(n) 2 n:
TIME(f(n)) € TIME(f(2n)3).

¢ more on “proper complexity functions”
later...
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Proof of Time Hierarchy Theorem

* Proof:
— SIM is TM deciding language
{ <M, x> : M accepts x in < f(|x|) steps }

— Claim: SIM runs in time g(n) = f(n)3.
— define new TM D: on input <M>

« if SIM accepts <M, M>, reject

« if SIM rejects <M, M>, accept
— D runs in time g(2n)
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Proof of Time Hierarchy Theorem

¢ Proof (continued):
— suppose M in TIME(f(n)) decides L(D)
« M(<M>) = SIM(<M, M>) # D(<M>)
* but M(<M>) = D(<M>)
— contradiction.

April 1, 2004 CS151 Lecture 2 16

Proof of Time Hierarchy Theorem

¢ Claim: there is a TM SIM that decides
{<M, x> : M accepts x in < f(|x|) steps}
and runs in time g(n) = f(n)3.
¢ Proof sketch: SIM has 4 work tapes

« contents and “virtual head” positions for M’s
tapes

* M’s transition function and state
« f(]x]) “+"s used as a clock
« scratch space
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Proof of Time Hierarchy Theorem

« contents and “virtual head” positions for M’s tapes
» M’s transition function and state
« f(]x]) “+"s used as a clock
« scratch space
— initialize tapes
— simulate step of M, advance head on tape 3;
repeat.
— can check running time is as claimed.
 Important detail: need to initialize tape 3 in
time O(f(n) + n)
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Proper Complexity Functions

« Definition: fis a proper complexity
function if
—f(n) 2 f(n-1) for all n
—there exists a TM M that outputs exactly f(n)
symbols on input 1", and runs in time O(f(n) +
n) and space O(f(n)).
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Proper Complexity Functions

« includes all reasonable functions we will
work with

—if fand g are proper then f + g, fg, f(g), f9, 29
are all proper

 can mostly ignore, but be aware it is a
genuine concern:

e Theorem: 3 non-proper f such that
TIME(f(n)) = TIME(2T™).
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Hierarchy Theorems

« Does genuinely more space permit us to
decide new languages?

Theorem (Space Hierarchy Theorem): For
every proper complexity function f(n) = log
n:

SPACE(f(n)) C SPACE(f(n)logf(n)).

¢ Proof: same ideas.
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Robust Time and Space Classes

« What is meant by “robust” class?
—no formal definition
— reasonable changes to model of computation
shouldn’t change class
— should allow “modular composition” — calling
subroutine in class (for classes closed under
complement...)
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Robust Time and Space Classes

¢ Robust time and space classes:

L = SPACE(log n)
PSPACE = 0O, SPACE(n¥)

P = O, TIME(nk)
EXP = O, TIME(2")
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Time and Space Classes

» Problems in these classes:

L : EVAL, integer N
multiplication, most /D\ /_'
reductions... 1 0 1

pasadena

ahens  PSPACE : generalized

A avis geography, 2-person
games...

auckland

san

francisco
oakland
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Time and Space Classes

P : CVAL, linear 0
programming, max- N
flow... U 0

PN
i o =
N N/
1 01 01

EXP : SAT, all of NP and much more...
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Relationships between classes

* How are these four classes related to each
other?

» Time Hierarchy Theorem implies
P C EXP
- P C TIME(2") C TIME(2@"3) C EXP
e Space Hierarchy Theorem implies
L € PSPACE
— L=SPACE(log n) C SPACE(log?n) c PSPACE
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Relationships between classes

» Easy: P C PSPACE
e Lvs. P, PSPACE vs. EXP ?
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Relationships between classes

« Useful convention: Turing Machine
configurations. Any point in computation

[0 Tos [ = [ Jow] = Tou]. .-

state=q

represented by string:
C=0,0,...0,q 0j;; Ojy»... O,
« start configuration for single-tape TM on
inp'Jt X qstartXlXZ' . 'Xn
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Relationships between classes

« easyto tell if C yields C’in 1 step

< configuration graph: nodes are configurations,
edge (C, C) iff C yields C’ in one step

« # configurations for a 2-tape TM (work tape +
read-only input) that runs in space t(n)

_nx t(n) x IQI\X|Z|@
input-tape head [ state
position work-tape
work-tape head contents

position
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Relationships between classes

« if t(n) = c log n, at most
nx (clogn) x ¢y x c,¢'09n< nk
configurations.

+ can determine if reach q,cept OF Gyeject from
start configuration by exploring config.
graph of size n(e.g. by DFS)

* Conclude:L c P
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Relationships between classes

« if t(n) = n¢, at most
k
NXNCXCyXc,"<2"
configurations.

+ can determine if reach d,cept OF Gyeject from
start configuratick)n by exploring config.
graph of size 2"" (e.g. by DFS)

» Conclude: PSPACE ¢ EXP
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Relationships between classes

» So far:
L c P c PSPACE c EXP

* believe all containments strict
e know L C PSPACE, P C EXP

« even before any mention of NP, two major
unsolved problems:

? ?
LZP P = PSPACE
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A P-complete problem
* We don't know how to prove L # P

¢ But, can identify problems in P least likely
to be in L using P- completeness.

* need stronger reduction (why?)

[y
L,
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Ly

A P-complete problem
* logspace reduction: f computable by TM

that uses O(log n) space
—denoted “L, 5, L,"

* If L,is P-complete, then L,in L implies L =
P (homework problem)
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A P-complete problem

¢ Circuit Value (CVAL): given a variable-free
Boolean circuit (gates 0, [, =, 0, 1), does it
output 17?

Theorem: CVAL is P-complete.
* Proof:
— already argued in P
— L arbitrary language in P, TM M decides L in
nk steps
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A P-complete problem

e Tableau (configurations written in an
array) for machine M on input w:

Wi/Qs | Wp | . | Wy — | <height=
wy |Wp/qy| .. | w, |~ | _ | time taken
wi/q| a W _ = |wl¢
: e width =
(/e _ ] « [ _ ]~] _ | spaceused
s wle
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A P-complete problem

¢ Important observation: contents of cell in
tableau determined by 3 others above it:

‘ a/q; | b a ‘ a |b/qy| a

b/q, a

‘u b u‘
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A P-complete problem

 Can build Boolean circuit STEP
—input (binary encoding of) 3 cells
— output (binary encoding of) 1 cell

| a [b/g, | a ] «eachoutput bitis some

function of inputs
« can build circuit for each

« size is independent of
size of tableau

*
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A P-complete problem

Tableau for |w,/q,| w, Wq _
M on input Wy |w/qy| . w, _
w

* |w|¢ copies of STEP compute row i from i-1
1 -]

STEP STEP STEP STEP STEP
FLEEEE TR PR e LT
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A P-complete problem

Wy W2 Wn a a .
PLLEEE T P This circuit

‘ w, |- ‘ _ CM'Whas
TTTTTTTTTTTT TTTTTT inputs
STEP STEP STEP STEP STEP |W;W,...w, and

STEP STEP STEP sTEP  sTep |C(W) =1iffM
: . |accepts input

W1/Qs‘ wa ‘
TTTTTTTTTTTT

. . W.
STEP STEP STEP STEP STEP
FEEEEE PR FEEEEE e [TIT11 |logspace
ignorethese reduction
— 1iff cell contains qqccepr Size = O(|w|2°)
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Answer to question

» Can we evaluate an n node Boolean
circuit using O(log n) space?

0
A
« NO! (probably) o~
[} [} -
* CVALin P if 7
andonlyifL=P

Padding and succinctness

Two consequences of measuring running
time as function of input length:
e “padding”
—suppose L 00 EXP, define
PAD, = {x#N:x 0L, N = 2K}
—same TM decides L (ignore #s)
— running time now polynomial !
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Padding and succinctness

e converse: “succinctness”
—suppose L is P-complete

— intuitively, some inputs are “hard” -- require
full power of P

— SUCCINCT, = input encoded in exponentially
shorter form than L

— if “hard” inputs encodable this way, then
candidate to be EXP-complete
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An EXP-complete problem

* succinct encoding for a directed
graph G= (V ={1,2,3,...}, E): Liff (L)) OE
« a succinct encoding for a
varlable free Boolean circuit:

1iff wire ?\\ J

from gate — TYP"‘ of
i to gate | gate

_type of
i i gate j

April 1, 2004 CS151 Lecture 2 44

An EXP-complete problem

 Succinct Circuit Value: given a succinctly
encoded variable-free Boolean circuit
(gates O, [0, =, 0, 1), does it output 1?
Theorem: Succinct Circuit Value is EXP-
complete.
¢ Proof:
—in EXP (why?)
— L arbitrary language in EXP, TM M decides L
in 2n steps
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An EXP-complete problem

—tableau for input X = X;X,X3...X:

height, "
width 2n

— Circuit C from CVAL reduction has size
k
0o(22™).
—TM M accepts input x iff circuit outputs 1
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An EXP-complete problem

— Can encode C succinctly:

-

1iff wire — —

from gate  typeof  typeof

itogatej 9atei gate - T

« if i, j within single STEP circuit, easy to compute
output

« if i, j between two STEP circuits, easy to compute
output

« if one of i, j refers to input gates, consult x to
compute output
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Summary

* Remaining TM details: big-oh necessary.
» First complexity classes:

L, P, PSPACE, EXP
* First separations (via simulation and

diagonalization):

P # EXP, L # PSPACE

« First major open questions:
L : P P ; PSPACE

First complete problems:

— CVAL is P-complete
— Succinct CVAL is EXP-complete
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April 1, 2004

Summary

EXP
PSP,

-
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