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Time and Space

A motivating question:
– Boolean formula with n nodes

– evaluate using O(log n) space? 

∨

∧ ¬

� � �

• depth-first traversal 
requires storing 
intermediate values

• idea: short-circuit 
ANDs and ORs when 
possible
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Time and Space
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• Can we evaluate an n node Boolean 
circuit using O(log n) space? 
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Time and Space

• Recall:
– TIME(f(n)), SPACE(f(n)) 

• Questions:
– how are these classes related to each other? 

– how do we define robust time and space 
classes?

– what problems are contained in these 
classes? complete for these classes?
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Outline

• Why big-oh? Linear Speedup Theorem

• Hierarchy Theorems

• Robust Time and Space Classes

• Relationships between classes

• Some complete problems
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Linear Speedup

Theorem: Suppose TM M decides language L in 
time f(n). Then for any � > 0, there exists TM M’
that decides L in time

� f(n) + n + 2.
• Proof:

– simple idea: increase “word length”
– M’ will have

• one more tape than M
• m-tuples of symbols of M

�new = �old ∪∪∪∪ �old
m

• many more states
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Linear Speedup

• part 1: compress input onto fresh tape

������� � � � � � � �

��������� ��� ���
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Linear Speedup

• part 2: simulate M, m steps at a time

� � � � � � � � � � �

��������� ��� ��� ��� ���

������������

������

� �

– 4 (L,R,R,L) steps to read relevant symbols, 
“remember” in state

– 2 (L,R or R,L) to make M’s changes 
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Linear Speedup

• accounting:
– part 1 (copying): n + 2 steps
– part 2 (simulation): 6 (f(n)/m)
– set m = 6/�
– total: � f(n) + n + 2

Theorem: Suppose TM M decides language L in 
space f(n). Then for any � > 0, there exists TM 
M’ that decides L in space �f(n) + 2.

• Proof: same.
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Time and Space

• Moral: big-oh notation necessary given our 
model of computation
– Recall: f(n) = O(g(n)) if there exists c such that f(n) � c 

g(n) for all sufficiently large n.
– TM model incapable of making distinctions between 

time and space usage that differs by a constant.

• In general: interested in course distinctions not 
affected by model
– e.g. simulation of k-string TM running in time f(n) by 

single-string TM running in time O(f(n)2)
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Hierarchy Theorems

• Does genuinely more time permit us to 
decide new languages?

• how can we construct a language L that is 
not in TIME(f(n))…

• idea: same as “HALT undecidable”
diagonalization and simulation
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Recall proof for Halting Problem

Turing 
Machines 

inputs 

Y

n

Y

n

n

Y

n

Y n Y Y nn YH’ :

box   
(M, x): 
does M 
halt on 
x? 

The existence of 
H which tells us 
yes/no for each 
box allows us to 
construct a TM H’
that cannot be in 
the table.
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Time Hierarchy Theorem

Turing 
Machines 

inputs 

Y

n

Y

n

n

Y

n

Y n Y Y nn YD :

box   (M, x): does M 
accept x in time f(n)? 

• TM SIM tells us 
yes/no for each box 
in time g(n)
• rows include all of 
TIME(f(n))
• construct TM D 
running in time g(2n) 
that is not in table
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Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For 
every proper complexity function f(n) 

�
n:

TIME(f(n)) � TIME(f(2n)3).

• more on “proper complexity functions”
later…
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Proof of Time Hierarchy Theorem

• Proof: 
– SIM is TM deciding language

{ <M, x> : M accepts x in � f(|x|) steps }

– Claim: SIM runs in time g(n) = f(n)3.

– define new TM D: on input <M>

• if SIM accepts <M, M>, reject
• if SIM rejects <M, M>, accept

– D runs in time g(2n) 
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Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D) 

• M(<M>) = SIM(<M, M>) � D(<M>)

• but M(<M>) = D(<M>)
– contradiction.
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Proof of Time Hierarchy Theorem

• Claim: there is a TM SIM that decides 
{<M, x> : M accepts x in � f(|x|) steps}

and runs in time g(n) = f(n)3.
• Proof sketch: SIM has 4 work tapes

• contents and “virtual head” positions for M’s 
tapes 

• M’s transition function and state
• f(|x|) “+”s used as a clock

• scratch space
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Proof of Time Hierarchy Theorem

• contents and “virtual head” positions for M’s tapes 
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3; 

repeat.
– can check running time is as claimed. 

• Important detail: need to initialize tape 3 in 
time O(f(n) + n)
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Proper Complexity Functions

• Definition: f is a proper complexity 
function if
– f(n) � f(n-1) for all n

– there exists a TM M that outputs exactly f(n) 
symbols on input 1n, and runs in time O(f(n) + 
n) and space O(f(n)).
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Proper Complexity Functions

• includes all reasonable functions we will 
work with
– log n, 

�
n, n2, 2n, n!, …

– if f and g are proper then f + g, fg, f(g), fg, 2g

are all proper

• can mostly ignore, but be aware it is a 
genuine concern:

• Theorem: � non-proper f such that 
TIME(f(n)) = TIME(2f(n)).
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Hierarchy Theorems

• Does genuinely more space permit us to 
decide new languages?

Theorem (Space Hierarchy Theorem): For 
every proper complexity function f(n) 

�
log 

n:
SPACE(f(n)) � SPACE(f(n)logf(n)).

• Proof: same ideas.
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Robust Time and Space Classes

• What is meant by “robust” class? 
– no formal definition

– reasonable changes to model of computation 
shouldn’t change class

– should allow “modular composition” – calling 
subroutine in class (for classes closed under 
complement…)
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Robust Time and Space Classes

• Robust time and space classes:

L = SPACE(log n)
PSPACE = ∪∪∪∪k SPACE(nk)

P = ∪∪∪∪k TIME(nk) 
EXP = ∪∪∪∪k TIME(2nk) 
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Time and Space Classes

• Problems in these classes: ∨

∧ ¬

� � �

L : FVAL, integer 
multiplication, most 
reductions…

PSPACE : generalized 
geography, 2-person 
games…

pasadena

athens
auckland

san 
francisco

oakland

davis
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Time and Space Classes

P : CVAL, linear 
programming, max-
flow… ∨

∧

� �

∧

∨ ¬
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∧

EXP : SAT, all of NP and much more…
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Relationships between classes

• How are these four classes related to each 
other?

• Time Hierarchy Theorem implies
P � EXP

– P � TIME(2n) � TIME(2(2n)3) � EXP

• Space Hierarchy Theorem implies
L � PSPACE

– L=SPACE(log n) � SPACE(log2 n) � PSPACE
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Relationships between classes

• Easy: P � PSPACE

• L vs. P, PSPACE vs. EXP ?
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Relationships between classes

• Useful convention: Turing Machine 
configurations. Any point in computation

represented by string:
C = � 1 � 2 … � i q � i+1 � i+2… � m

• start configuration for single-tape TM on 
input x: qstartx1x2…xn

	� ������


�����
��

	� � 	� 	��� � 	�
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Relationships between classes

• easy to tell if C yields C’ in 1 step 

• configuration graph: nodes are configurations, 
edge (C, C’) iff C yields C’ in one step

• # configurations for a 2-tape TM (work tape + 
read-only input) that runs in space t(n) 

n x t(n) x |Q| x |
�

|f(n)

����������������
��
�����

���������������
��
�����


����
����������
�������
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Relationships between classes

• if t(n) = c log n, at most
n x (c log n) x c0 x c1

c log n � nk

configurations.

• can determine if reach qaccept or qreject from 
start configuration by exploring config. 
graph of size nk (e.g. by DFS)

• Conclude: L � P



6

April 1, 2004 CS151 Lecture 2 31

Relationships between classes

• if t(n) = nc, at most
n x nc x c0 x c1

nc � 2nk

configurations.

• can determine if reach qaccept or qreject from 
start configuration by exploring config. 
graph of size 2nk

(e.g. by DFS)

• Conclude: PSPACE � EXP
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Relationships between classes

• So far:
L � P � PSPACE � EXP

• believe all containments strict
• know L � PSPACE, P � EXP 

• even before any mention of NP, two major
unsolved problems: 

L = P P = PSPACE
� �
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A P-complete problem

• We don’t know how to prove L � P
• But, can identify problems in P least likely

to be in L using P- completeness.
• need stronger reduction (why?)

yes

no

yes

noL1 L2

f

f

April 1, 2004 CS151 Lecture 2 34

A P-complete problem

• logspace reduction: f computable by TM 
that uses O(log n) space 
– denoted “L1 �L L2”

• If L2 is P-complete, then L2 in L implies L = 
P (homework problem)
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A P-complete problem

• Circuit Value (CVAL): given a variable-free 
Boolean circuit (gates ∧, ∨, ¬, 0, 1), does it 
output 1?

Theorem: CVAL is P-complete.
• Proof:

– already argued in P
– L arbitrary language in P, TM M decides L in 

nk steps
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A P-complete problem

• Tableau (configurations written in an 
array) for machine M on input w:

����� �� � �� ��

�� ����� � �� ��

����� � � �� ��

���� � � � ��

�
�
��

�
�
��

• height = 
time taken   
= |w|c

• width = 
space used 

� |w|c



7

April 1, 2004 CS151 Lecture 2 37

A P-complete problem

• Important observation: contents of cell in 
tableau determined by 3 others above it:

���� � �

����

� ���� �

�

� � �

�

April 1, 2004 CS151 Lecture 2 38

A P-complete problem

• Can build Boolean circuit STEP
– input (binary encoding of)  3 cells

– output (binary encoding of) 1 cell

� ���� �

�

 ! "#

• each output bit is some 
function of inputs

• can build circuit for each 

• size is independent of 
size of tableau
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A P-complete problem

• |w|c copies of STEP compute row i from i-1

����� �� � �� ��

�� ����� � �� ��

�
�
��

�
�
��

Tableau for 
M on input 

w

�

�

 ! "#  ! "#  ! "#  ! "#  ! "#
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A P-complete problem

����� �� � �� ��

 ! "#  ! "#  ! "#  ! "#  ! "#

 ! "#  ! "#  ! "#  ! "#  ! "#

 ! "#  ! "#  ! "#  ! "#  ! "#

�
�
��

�
�
��

���$$ ��%%��������
��������

�&��������
�

This circuit 
CM, w has 
inputs 
w1w2…wn and 
C(w) = 1 iff M 
accepts input 
w.

logspace
reduction

Size = O(|w|2c)

�� �� ��
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Answer to question

∨

∧

� �

∧

∨ ¬

� � �

∧

• Can we evaluate an n node Boolean 
circuit using O(log n) space? 

• NO! (probably)

• CVAL in P if 
and only if L = P
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Padding and succinctness

Two consequences of measuring running 
time as function of input length:

• “padding”
– suppose L ∈ EXP, define

PADL = { x#N : x ∈ L, N = 2|x|k }
– same TM decides L (ignore #s)

– running time now polynomial !
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Padding and succinctness

• converse: “succinctness”
– suppose L is P-complete
– intuitively, some inputs are “hard” -- require 

full power of P
– SUCCINCTL = input encoded in exponentially 

shorter form than L

– if “hard” inputs encodable this way, then 
candidate to be EXP-complete
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An EXP-complete problem

• succinct encoding for a directed 
graph G= (V = {1,2,3,…}, E):

• a succinct encoding for a 
variable-free Boolean circuit:

� '

���$$ (�)�'*�∈ "

� '

���$$ �����
$����&����
�����&����'

�+����$�
&�����

�+����$�
&����'
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An EXP-complete problem

• Succinct Circuit Value: given a succinctly 
encoded variable-free Boolean circuit 
(gates ∧, ∨, ¬, 0, 1), does it output 1?

Theorem: Succinct Circuit Value is EXP-
complete.

• Proof:
– in EXP (why?)

– L arbitrary language in EXP, TM M decides L 

in 2nk
steps
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An EXP-complete problem

– tableau for input x = x1x2x3…xn:

– Circuit C from CVAL reduction has size 

O(22nk
).

– TM M accepts input x iff circuit outputs 1

,����������

���&��)�
���������
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An EXP-complete problem

– Can encode C succinctly:

• if i, j within single STEP circuit, easy to compute 
output

• if i, j between two STEP circuits, easy to compute 
output

• if one of i, j refers to input gates, consult x to 
compute output

� '

���$$ �����
$����&����
�����&����'

�+����$�
&�����

�+����$�
&����'
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Summary
• Remaining TM details: big-oh necessary.
• First complexity classes: 

L, P, PSPACE, EXP
• First separations (via simulation and 

diagonalization):
P � EXP, L � PSPACE

• First major open questions:

L = P P = PSPACE
• First complete problems:

– CVAL is P-complete
– Succinct CVAL is EXP-complete

� �
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Summary
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