
1

CS151
Complexity Theory

Lecture 2
April 1, 2004

April 1, 2004 CS151 Lecture 2 2

Time and Space

A motivating question:
– Boolean formula with n nodes

– evaluate using O(log n) space?

∨

∧ ¬

� � �

• depth-first traversal
requires storing
intermediate values

• idea: short-circuit
ANDs and ORs when
possible

April 1, 2004 CS151 Lecture 2 3

Time and Space

∨

∧

� �

∧

∨ ¬

� � �

∧

• Can we evaluate an n node Boolean
circuit using O(log n) space?

April 1, 2004 CS151 Lecture 2 4

Time and Space

• Recall:
– TIME(f(n)), SPACE(f(n))

• Questions:
– how are these classes related to each other?

– how do we define robust time and space
classes?

– what problems are contained in these
classes? complete for these classes?

April 1, 2004 CS151 Lecture 2 5

Outline

• Why big-oh? Linear Speedup Theorem

• Hierarchy Theorems

• Robust Time and Space Classes

• Relationships between classes

• Some complete problems

April 1, 2004 CS151 Lecture 2 6

Linear Speedup

Theorem: Suppose TM M decides language L in
time f(n). Then for any � > 0, there exists TM M’
that decides L in time

� f(n) + n + 2.
• Proof:

– simple idea: increase “word length”
– M’ will have

• one more tape than M
• m-tuples of symbols of M

�new = �old ∪∪∪∪ �old
m

• many more states

2

April 1, 2004 CS151 Lecture 2 7

Linear Speedup

• part 1: compress input onto fresh tape

������� � � � � � � �

��������� ��� ���

April 1, 2004 CS151 Lecture 2 8

Linear Speedup

• part 2: simulate M, m steps at a time

� � � � � � � � � � �

��������� ��� ��� ��� ���

������������

������

� �

– 4 (L,R,R,L) steps to read relevant symbols,
“remember” in state

– 2 (L,R or R,L) to make M’s changes

April 1, 2004 CS151 Lecture 2 9

Linear Speedup

• accounting:
– part 1 (copying): n + 2 steps
– part 2 (simulation): 6 (f(n)/m)
– set m = 6/�
– total: � f(n) + n + 2

Theorem: Suppose TM M decides language L in
space f(n). Then for any � > 0, there exists TM
M’ that decides L in space �f(n) + 2.

• Proof: same.

April 1, 2004 CS151 Lecture 2 10

Time and Space

• Moral: big-oh notation necessary given our
model of computation
– Recall: f(n) = O(g(n)) if there exists c such that f(n) � c

g(n) for all sufficiently large n.
– TM model incapable of making distinctions between

time and space usage that differs by a constant.

• In general: interested in course distinctions not
affected by model
– e.g. simulation of k-string TM running in time f(n) by

single-string TM running in time O(f(n)2)

April 1, 2004 CS151 Lecture 2 11

Hierarchy Theorems

• Does genuinely more time permit us to
decide new languages?

• how can we construct a language L that is
not in TIME(f(n))…

• idea: same as “HALT undecidable”
diagonalization and simulation

April 1, 2004 CS151 Lecture 2 12

Recall proof for Halting Problem

Turing
Machines

inputs

Y

n

Y

n

n

Y

n

Y n Y Y nn YH’ :

box
(M, x):
does M
halt on
x?

The existence of
H which tells us
yes/no for each
box allows us to
construct a TM H’
that cannot be in
the table.

3

April 1, 2004 CS151 Lecture 2 13

Time Hierarchy Theorem

Turing
Machines

inputs

Y

n

Y

n

n

Y

n

Y n Y Y nn YD :

box (M, x): does M
accept x in time f(n)?

• TM SIM tells us
yes/no for each box
in time g(n)
• rows include all of
TIME(f(n))
• construct TM D
running in time g(2n)
that is not in table

April 1, 2004 CS151 Lecture 2 14

Time Hierarchy Theorem

Theorem (Time Hierarchy Theorem): For
every proper complexity function f(n)

�
n:

TIME(f(n)) � TIME(f(2n)3).

• more on “proper complexity functions”
later…

April 1, 2004 CS151 Lecture 2 15

Proof of Time Hierarchy Theorem

• Proof:
– SIM is TM deciding language

{ <M, x> : M accepts x in � f(|x|) steps }

– Claim: SIM runs in time g(n) = f(n)3.

– define new TM D: on input <M>

• if SIM accepts <M, M>, reject
• if SIM rejects <M, M>, accept

– D runs in time g(2n)

April 1, 2004 CS151 Lecture 2 16

Proof of Time Hierarchy Theorem

• Proof (continued):
– suppose M in TIME(f(n)) decides L(D)

• M(<M>) = SIM(<M, M>) � D(<M>)

• but M(<M>) = D(<M>)
– contradiction.

April 1, 2004 CS151 Lecture 2 17

Proof of Time Hierarchy Theorem

• Claim: there is a TM SIM that decides
{<M, x> : M accepts x in � f(|x|) steps}

and runs in time g(n) = f(n)3.
• Proof sketch: SIM has 4 work tapes

• contents and “virtual head” positions for M’s
tapes

• M’s transition function and state
• f(|x|) “+”s used as a clock

• scratch space
April 1, 2004 CS151 Lecture 2 18

Proof of Time Hierarchy Theorem

• contents and “virtual head” positions for M’s tapes
• M’s transition function and state
• f(|x|) “+”s used as a clock
• scratch space

– initialize tapes
– simulate step of M, advance head on tape 3;

repeat.
– can check running time is as claimed.

• Important detail: need to initialize tape 3 in
time O(f(n) + n)

4

April 1, 2004 CS151 Lecture 2 19

Proper Complexity Functions

• Definition: f is a proper complexity
function if
– f(n) � f(n-1) for all n

– there exists a TM M that outputs exactly f(n)
symbols on input 1n, and runs in time O(f(n) +
n) and space O(f(n)).

April 1, 2004 CS151 Lecture 2 20

Proper Complexity Functions

• includes all reasonable functions we will
work with
– log n,

�
n, n2, 2n, n!, …

– if f and g are proper then f + g, fg, f(g), fg, 2g

are all proper

• can mostly ignore, but be aware it is a
genuine concern:

• Theorem: � non-proper f such that
TIME(f(n)) = TIME(2f(n)).

April 1, 2004 CS151 Lecture 2 21

Hierarchy Theorems

• Does genuinely more space permit us to
decide new languages?

Theorem (Space Hierarchy Theorem): For
every proper complexity function f(n)

�
log

n:
SPACE(f(n)) � SPACE(f(n)logf(n)).

• Proof: same ideas.

April 1, 2004 CS151 Lecture 2 22

Robust Time and Space Classes

• What is meant by “robust” class?
– no formal definition

– reasonable changes to model of computation
shouldn’t change class

– should allow “modular composition” – calling
subroutine in class (for classes closed under
complement…)

April 1, 2004 CS151 Lecture 2 23

Robust Time and Space Classes

• Robust time and space classes:

L = SPACE(log n)
PSPACE = ∪∪∪∪k SPACE(nk)

P = ∪∪∪∪k TIME(nk)
EXP = ∪∪∪∪k TIME(2nk)

April 1, 2004 CS151 Lecture 2 24

Time and Space Classes

• Problems in these classes: ∨

∧ ¬

� � �

L : FVAL, integer
multiplication, most
reductions…

PSPACE : generalized
geography, 2-person
games…

pasadena

athens
auckland

san
francisco

oakland

davis

5

April 1, 2004 CS151 Lecture 2 25

Time and Space Classes

P : CVAL, linear
programming, max-
flow… ∨

∧

� �

∧

∨ ¬

� � �

∧

EXP : SAT, all of NP and much more…

April 1, 2004 CS151 Lecture 2 26

Relationships between classes

• How are these four classes related to each
other?

• Time Hierarchy Theorem implies
P � EXP

– P � TIME(2n) � TIME(2(2n)3) � EXP

• Space Hierarchy Theorem implies
L � PSPACE

– L=SPACE(log n) � SPACE(log2 n) � PSPACE

April 1, 2004 CS151 Lecture 2 27

Relationships between classes

• Easy: P � PSPACE

• L vs. P, PSPACE vs. EXP ?

April 1, 2004 CS151 Lecture 2 28

Relationships between classes

• Useful convention: Turing Machine
configurations. Any point in computation

represented by string:
C = � 1 � 2 … � i q � i+1 � i+2… � m

• start configuration for single-tape TM on
input x: qstartx1x2…xn

	� ������

�����
��

	� � 	� 	��� � 	�

April 1, 2004 CS151 Lecture 2 29

Relationships between classes

• easy to tell if C yields C’ in 1 step

• configuration graph: nodes are configurations,
edge (C, C’) iff C yields C’ in one step

• # configurations for a 2-tape TM (work tape +
read-only input) that runs in space t(n)

n x t(n) x |Q| x |
�

|f(n)

����������������
��
�����

���������������
��
�����

����
����������
�������

April 1, 2004 CS151 Lecture 2 30

Relationships between classes

• if t(n) = c log n, at most
n x (c log n) x c0 x c1

c log n � nk

configurations.

• can determine if reach qaccept or qreject from
start configuration by exploring config.
graph of size nk (e.g. by DFS)

• Conclude: L � P

6

April 1, 2004 CS151 Lecture 2 31

Relationships between classes

• if t(n) = nc, at most
n x nc x c0 x c1

nc � 2nk

configurations.

• can determine if reach qaccept or qreject from
start configuration by exploring config.
graph of size 2nk

(e.g. by DFS)

• Conclude: PSPACE � EXP

April 1, 2004 CS151 Lecture 2 32

Relationships between classes

• So far:
L � P � PSPACE � EXP

• believe all containments strict
• know L � PSPACE, P � EXP

• even before any mention of NP, two major
unsolved problems:

L = P P = PSPACE
� �

April 1, 2004 CS151 Lecture 2 33

A P-complete problem

• We don’t know how to prove L � P
• But, can identify problems in P least likely

to be in L using P- completeness.
• need stronger reduction (why?)

yes

no

yes

noL1 L2

f

f

April 1, 2004 CS151 Lecture 2 34

A P-complete problem

• logspace reduction: f computable by TM
that uses O(log n) space
– denoted “L1 �L L2”

• If L2 is P-complete, then L2 in L implies L =
P (homework problem)

April 1, 2004 CS151 Lecture 2 35

A P-complete problem

• Circuit Value (CVAL): given a variable-free
Boolean circuit (gates ∧, ∨, ¬, 0, 1), does it
output 1?

Theorem: CVAL is P-complete.
• Proof:

– already argued in P
– L arbitrary language in P, TM M decides L in

nk steps

April 1, 2004 CS151 Lecture 2 36

A P-complete problem

• Tableau (configurations written in an
array) for machine M on input w:

����� �� � �� ��

�� ����� � �� ��

����� � � �� ��

���� � � � ��

�
�
��

�
�
��

• height =
time taken
= |w|c

• width =
space used

� |w|c

7

April 1, 2004 CS151 Lecture 2 37

A P-complete problem

• Important observation: contents of cell in
tableau determined by 3 others above it:

���� � �

����

� ���� �

�

� � �

�

April 1, 2004 CS151 Lecture 2 38

A P-complete problem

• Can build Boolean circuit STEP
– input (binary encoding of) 3 cells

– output (binary encoding of) 1 cell

� ���� �

�

 ! "#

• each output bit is some
function of inputs

• can build circuit for each

• size is independent of
size of tableau

April 1, 2004 CS151 Lecture 2 39

A P-complete problem

• |w|c copies of STEP compute row i from i-1

����� �� � �� ��

�� ����� � �� ��

�
�
��

�
�
��

Tableau for
M on input

w

�

�

 ! "# ! "# ! "# ! "# ! "#

April 1, 2004 CS151 Lecture 2 40

A P-complete problem

����� �� � �� ��

 ! "# ! "# ! "# ! "# ! "#

 ! "# ! "# ! "# ! "# ! "#

 ! "# ! "# ! "# ! "# ! "#

�
�
��

�
�
��

���$$ ��%%��������
��������

�&��������
�

This circuit
CM, w has
inputs
w1w2…wn and
C(w) = 1 iff M
accepts input
w.

logspace
reduction

Size = O(|w|2c)

�� �� ��

April 1, 2004 CS151 Lecture 2 41

Answer to question

∨

∧

� �

∧

∨ ¬

� � �

∧

• Can we evaluate an n node Boolean
circuit using O(log n) space?

• NO! (probably)

• CVAL in P if
and only if L = P

April 1, 2004 CS151 Lecture 2 42

Padding and succinctness

Two consequences of measuring running
time as function of input length:

• “padding”
– suppose L ∈ EXP, define

PADL = { x#N : x ∈ L, N = 2|x|k }
– same TM decides L (ignore #s)

– running time now polynomial !

8

April 1, 2004 CS151 Lecture 2 43

Padding and succinctness

• converse: “succinctness”
– suppose L is P-complete
– intuitively, some inputs are “hard” -- require

full power of P
– SUCCINCTL = input encoded in exponentially

shorter form than L

– if “hard” inputs encodable this way, then
candidate to be EXP-complete

April 1, 2004 CS151 Lecture 2 44

An EXP-complete problem

• succinct encoding for a directed
graph G= (V = {1,2,3,…}, E):

• a succinct encoding for a
variable-free Boolean circuit:

� '

���$$ (�)�'*�∈ "

� '

���$$ �����
$����&����
�����&����'

�+����$�
&�����

�+����$�
&����'

April 1, 2004 CS151 Lecture 2 45

An EXP-complete problem

• Succinct Circuit Value: given a succinctly
encoded variable-free Boolean circuit
(gates ∧, ∨, ¬, 0, 1), does it output 1?

Theorem: Succinct Circuit Value is EXP-
complete.

• Proof:
– in EXP (why?)

– L arbitrary language in EXP, TM M decides L

in 2nk
steps

April 1, 2004 CS151 Lecture 2 46

An EXP-complete problem

– tableau for input x = x1x2x3…xn:

– Circuit C from CVAL reduction has size

O(22nk
).

– TM M accepts input x iff circuit outputs 1

,����������

���&��)�
���������

April 1, 2004 CS151 Lecture 2 47

An EXP-complete problem

– Can encode C succinctly:

• if i, j within single STEP circuit, easy to compute
output

• if i, j between two STEP circuits, easy to compute
output

• if one of i, j refers to input gates, consult x to
compute output

� '

���$$ �����
$����&����
�����&����'

�+����$�
&�����

�+����$�
&����'

April 1, 2004 CS151 Lecture 2 48

Summary
• Remaining TM details: big-oh necessary.
• First complexity classes:

L, P, PSPACE, EXP
• First separations (via simulation and

diagonalization):
P � EXP, L � PSPACE

• First major open questions:

L = P P = PSPACE
• First complete problems:

– CVAL is P-complete
– Succinct CVAL is EXP-complete

� �

9

April 1, 2004 CS151 Lecture 2 49

Summary

�� �

�	 �
 ��

�
�

