CS151 Complexity Theory

Lecture 17
May 27, 2004

Outline

- elements of the proof of the PCP Theorem
- counting problems
- \#P and its relation to other classes
- complexity of computing the permanent
- proofs about proofs:
- relativization
- natural proofs
- course summary

May 27, 2004
CS151 Lecture 17
2

NP \subset PCP[log n, polylog $n]$

- $\log \mathrm{n}$ random bits to pick a constraint
- query assignment in polylog(n) locations to determine if constraint is satisfied
- completeness 1
- soundness ($1-\varepsilon$) if prover keeps promise to supply degree d polynomial
- prover can cheat by not supplying proof in expected form

May 27, 2004

$N P \subset P C P[\log n$, polylog $n]$

- Low-degree testing:
- want: randomized procedure that is given d, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$
- runs in poly(m, d) time
- always accepts if deg(f) $\leq \mathrm{d}$
- rejects with high probability if deg(f) $>\mathrm{d}$
- too much to ask. Why?

$N P \subset P C P[\log n$, polylog $n]$

Definition: functions f, g are δ-close if

$$
\operatorname{Pr}_{x}[f(x) \neq g(x)] \leq \delta
$$

Lemma: $\exists \delta>0$ and a randomized procedure that is given d, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$

- runs in poly (m, d) time
- uses $O\left(m \log \left|F_{q}\right|\right)$ random bits
- always accepts if deg(f) $\leq d$
- rejects with high probability if f is not δ-close to any g with $\operatorname{deg}(\mathrm{g}) \leq \mathrm{d}$

May 27, 2004
CS151 Lecture 17

$N P \subset P C P[l o g n$, polylog $n]$

- idea of proof:
- restrict to random line L
- check if it is low degree

- always accepts if $\operatorname{deg}(f) \leq d$
- other direction much more complex

$N P \subset P C P[\log n$, polylog $n]$

- can only force prover to supply function f that is close to a low-degree polynomial
- how to bridge the gap?
- recall low-degree polynomials form an error correcting code (Reed-Muller)
- view "close" function as corrupted codeword

NP \subset PCP $[\log n$, polylog $n]$

Lemma: \exists a randomized procedure that is given x, oracle access to $f:\left(F_{q}\right)^{m} \rightarrow\left(F_{q}\right)$ that is δ-close to a (unique) degree d polynomial g

- runs in poly(m, d) time
- uses $O\left(m \log \left|F_{q}\right|\right)$ random bits
- outputs $g(x)$ with high probability

NP \subset PCP[log n, polylog $n]$

- idea of proof:
- restrict to random line L passing through x
- query points along line
- apply error correction

CS151 Lecture 17

Counting problems

- So far, we have ignored function problems - given x, compute $f(x)$
- justification: usually easily reducible to related decision problem
- important class of function problems that don't seem to have this property:
counting problems
- e.g. given 3-CNF φ how many satisfying assignments are there?

May 27, 2004
CS151 Lecture 17

Counting problems

- examples
- \#SAT: given 3-CNF φ how many satisfying assignments are there?
- \#CLIQUE: given (G, k) how many cliques of size at least k are there?

Reductions

- problem f is \#P-complete if

$-f$ is in \#P			
- every problem in \#P reduces to f	x (prob. 1)		
	f_{1}		
$f_{1}(x)$		$\xrightarrow{4}$	(prob. 2)
:---:			
$f_{2}(y)$			

- "parsimonious reduction": A is identity
- many standard NP-completeness reductions are parsimonious
- therefore: if \#SAT is \#P-complete we get lots of \#P-complete problems

Counting problems

- \#P is the class of function problems expressible as:
input $x \quad f(x)=|\{y:(x, y) \in R\}|$
where $R \in \mathbf{P}$.
- compare to NP (decision problem)
input $x \quad f(x)=\exists y:(x, y) \in R$?
where $R \in \mathbf{P}$.

May 27, 2004

Reductions

- Reduction from function problem f_{1} to function problem f_{2}
- two efficiently computable functions Q, A

\#SAT

\#SAT: given 3-CNF φ how many satisfying assignments are there?

Theorem: \#SAT is \#P-complete.

- Proof:
- clearly in \#P: $(\varphi, A) \in R \Leftrightarrow$ A satisfies φ
- take any $f \in$ \# \mathbf{P} defined by $R \in \mathbf{P}$

- add new variables z, produce φ such that
$\exists z \varphi(x, y, z)=1 \Leftrightarrow C(x, y)=1$
- for (x, y) such that $C(x, y)=1$ this z is unique
- hardwire x
$-\#$ satisfying assignments $=|\{y:(x, y) \in R\}|$
May 27, 2004
CS151 Lecture 17

Relationship to other classes

- To compare to classes of decision problems, usually consider

P\#P
which is a decision class...

- easy: NP, coNP $\subset \mathbf{P}^{\# P}$
- easy: $\mathbf{P}^{\# P} \subset$ PSPACE

Toda's Theorem: $\mathrm{PH} \subset \mathbf{P}$ \#P.

Relationship to other classes

Question: is \#P hard because it entails finding NP witnesses?
...or is counting difficult by itself?

Bipartite Matchings

- Definition:
$-\mathrm{G}=(\mathrm{U}, \mathrm{V}, \mathrm{E})$ bipartite graph with $|\mathrm{U}|=|\mathrm{V}|$
- a perfect matching in G is a subset $M \subset E$ that touches every node, and no two edges in M share an endpoint

Bipartite Matchings

- \#MATCHING: given a bipartite graph $\mathrm{G}=(\mathrm{U}, \mathrm{V}, \mathrm{E})$ how many perfect matchings does it have?

Theorem: \#MATCHING is \#P-complete.

- But... can find a perfect matching in polynomial time!
- counting itself must be difficult

May 27, 2004
CS151 Lecture 17
24

The permanent

- The permanent of a matrix A is defined as:

$$
\operatorname{per}(A)=\Sigma_{\pi} \Pi_{i} A_{i}, \pi(i)
$$

- \# of perfect matchings in a bipartite graph G is exactly permanent of G's adjacency matrix A_{G}
- a perfect matching defines a permutation that contributes 1 to the sum

Approaches to open problems

- Almost all major open problems we have seen entail proving lower bounds
$-P \neq N P \quad-P=B P P^{*}$
$-L \neq P$ - NP = AM *
- P \neq PSPACE
- NC proper
- we know circuit lower bounds imply derandomization
- BPP \neq EXP
- PH proper
- more difficult (and recent): derandomization implies
- P/poly \neq EXP circuit lower bounds!

The permanent

- thus permanent is \#P-complete
- permanent also has many nice properties that make it a favorite of complexity theory
- contrast permanent (very hard)

$$
\operatorname{per}(\mathrm{A})=\Sigma_{\pi} \Pi_{i} A_{i}, \pi(i)
$$

to determinant (very easy):

$$
\operatorname{det}(A)=\Sigma_{\pi} \operatorname{sgn}(\pi) \Pi_{i} A_{i}, \pi(i)
$$

May 27,2004
CS151 Lecture 17
26

Approaches to open problems

- two natural approaches
- simulation+diagonalization (uniform)
- circuit lower bounds (non-uniform)
- no success for either approach as applied to date

Why?
May 27, 2004
CS151 Lecture 17

Approaches to open problems

in a precise, formal sense these approaches are too powerful !

- if they could be used to resolve major open problems, a side effect would be:
- proving something that is false, or
- proving something that is believed to be false

May 27, 2004
CS151 Lecture 17 29

Relativization

- Many proofs and techniques we have seen relativize:
- they hold after replacing all TMs with oracle TMs that have access to an oracle A
-e.g. $L^{A} \subset P^{A}$ for all oracles A
- e.g. PA $^{\mathrm{A}} \neq$ EXP $^{\mathrm{A}}$ for all oracles A

Relativization

- Idea: design an oracle A relative to which some statement is false
- implies there can be no relativizing proof of that statement
- e.g. design A for which $\mathrm{PA}^{\mathrm{A}}=$ NPA $^{\mathrm{A}}$
- Better: also design an oracle B relative to which statement is true
- e.g. also design B for which $P^{B} \neq N^{B}$
- implies no relativizing proof can resolve truth of the statement either way!

May 27, 2004
CS151 Lecture 17

Oracles for \mathbf{P} vs. NP

- Goal:
- oracle A for which PA $=$ NPA A
- oracle B for which $P^{B} \neq N^{B}$
- conclusion: resolving

P vs. NP
requires a non-relativizing proof

Oracles for \mathbf{P} vs. NP

Theorem: there exists an oracle B for which $P^{B} \neq N^{B}$.

- Proof:
- define

$$
L=\left\{1^{k}: \exists x \in B \text { s.t. }|x|=k\right\}
$$

- we will show $L \in N^{B}-P^{B}$.
- easy: $L \in N P^{B}$ (no matter what B is)

Relativization

- Oracles are known that falsify almost every major conjecture concerning complexity classes
- for these conjectures, non-relativizing proofs are required
- almost all known proofs in Complexity relativize (sometimes after some reformulation)
- notable exceptions:
- The PCP Theorem
- IP = PSPACE
- most circuit lower bounds (more on these later)

May 27, 2004
CS151 Lecture 17
32

Oracles for \mathbf{P} vs. NP

- for $P^{A}=N^{A}$ need A to be powerful
- warning: intend to make \mathbf{P} more powerful, but also make NP more powerful.
- e.g. A = SAT doesn't work
- however A = QSAT works:

PSPACE \subset POSAT \subset NPQSAT \subset NPSPACE and we know NPSPACE \subset PSPACE
,

Oracles for \mathbf{P} vs. NP

- design B by diagonalizing against all
"PB machines"
$-M_{1}, M_{2}, M_{3}, \ldots$ is an enumeration of deterministic OTMs
- each machine appears infinitely often \Rightarrow all poly-time machines appear even if we force machine M_{i} to accept after $n^{\log n}$ steps
$-B_{i}$ will be those strings of length $\leq i$ in B
- we build B_{i} after simulating machine M_{i}

May 27, 2004
CS151 Lecture 17
36

Oracles for \mathbf{P} vs. NP

$L=\left\{1^{k}: \exists x \in B\right.$ s.t. $\left.|x|=k\right\}$

- Proof (continued):
- maintain "exceptions" X that must not go in B
- initially $X=\{ \}, B_{0}=\{ \}$

Stage i:

- simulate $\left.M_{i}(1)^{\prime}\right)$ for ${ }^{\text {log } i}$ steps
- when M_{i} makes an oracle query q :
- if $|q|<i$, answer using B_{i-1}
- if $|q| \geq i$, answer "no"; add q to X
- if simulated M_{i} accepts 1^{i} then $B_{i}=B_{i-1}$
- if simulated M_{i} rejects $1^{i}, B_{i}=B_{i-1} \cup\left\{x \in\{0,1\}^{i}: x \notin X\right\}$

May 27,2004
CS151 Lecture 17

Circuit lower bounds

- Relativizing techniques are out...
- but most circuit lower bound techniques do not relativize
- exponential circuit lower bounds known for weak models:
- e.g. constant-depth poly-size circuits
- But, utter failure (so far) for more general models. Why?

[^0]CS151 Lecture 17
39

Oracles for \mathbf{P} vs. NP

$$
L=\left\{1^{k}: \exists x \in \text { B s.t. }|x|=k\right\}
$$

- Proof (continued):
- if M_{i} accepts, we ensure no strings of length i in B
- therefore $1^{i} \notin L$, and M_{i} does not decide L
- if M_{i} rejects, we ensure some string of length i in B
- Why?

$$
B_{i}=B_{i-1} \cup\left\{x \in\{0,1\}^{i}: x \notin X\right\}
$$

and $|X|$ is at most $\Sigma_{j \leq i} j^{\log j} \ll 2^{i}$

- therefore $1^{i} \in L$, and M_{i} does not decide L
- Conclude: $L \notin \mathrm{~PB}^{\mathrm{B}}$

May 27, 2004
CS151 Lecture 17
38

- Razborov and Rudich defined the following "natural" format for circuit lower bounds:
- identify property $\underline{\boldsymbol{P}}$ of functions $\mathrm{f}:\{0,1\}^{\boldsymbol{*}} \rightarrow\{0,1\}$
- $\underline{\mathbf{P}}=\cup_{n} \underline{\boldsymbol{P}}_{n}$ is a natural property if:
- (useful) $\forall n f_{n} \in \underline{P}_{n}$ implies f does not have polysize circuits
- (constructive) can decide " $\mathrm{f}_{\mathrm{n}} \in \underline{\mathbf{P}}_{\mathrm{n}}$?" in poly time given the truth table of f_{n}
- (large) at least $(1 / 2)^{O(n)}$ fraction of all $2^{2^{n}}$ functions on n bits are in \underline{P}_{n}
- show some function family $g=\left\{g_{n}\right\}$ is in \underline{P}_{n}

Natural Proofs

- all known circuit lower bounds are natural for a suitably parameterized version of the definition
Theorem (RR): if there is a $2^{n^{\delta}}$-OWF, then there is no natural property $\underline{\mathbf{P}}$.
- factoring believed to be $2^{n}{ }^{\text {}}$-OWF
- general version also rules out natural properties useful for proving many other separations, under similar cryptographic assumptions
May 27, 2004
CS151 Lecture 17

Natural Proofs

- Proof sketch:
- main tool: pseudo-random functions
- ensemble $F_{k}=\left\{p_{y}:\{0,1\}^{n(k)} \rightarrow\{0,1\}\right\}_{\mathrm{y} \in\{0,1\}^{\mathrm{k}}}$
$-F=\cup_{k} F_{k}$ is $t(k)$-pseudo-random if
- given y, x, can compute $\mathrm{p}_{\mathrm{y}}(\mathrm{x})$ in poly $(|\mathrm{y}|,|\mathrm{x}|)$ time
- for every prob. TM M running in time $t(k)$:

$$
\left|\operatorname{Pr}_{y}\left[M^{P_{y}}\left(1^{k}\right)=1\right]-\operatorname{Pr}_{f_{n}}\left[M^{f_{n}}\left(1^{k}\right)=1\right]\right| \leq 1 / t
$$

- can construct from (BMY-style) PRGs
- $2^{n^{\delta}}$-OWF implies $2^{\text {cn-pseudo-random functions } \forall c ~}$

May 27, 2004
42

CS151 Lecture 17

Natural Proofs

(useful) $\forall \mathrm{n} \mathrm{f}_{\mathrm{n}} \in \underline{\mathbf{P}}_{\mathrm{n}} \Rightarrow \mathrm{f}$ does not have poly-size circuits (constructive) " $f_{n} \in \underline{\boldsymbol{P}}_{n}$?" in poly time given truth table of f_{n} (large) at least $(1 / 2)^{O(n)}$ fraction of all $2^{2^{n}}$ fns. on n-bits in \underline{P}_{n}

- Proof sketch (continued):
- pseudo-random function p_{y} has poly-size circuits, and so $p_{y} \notin \underline{\mathbf{P}}_{\mathrm{n}}$ (useful)
- Define OTM M so that $M\left(1^{k}\right)$ reads $2^{n(k)}$-size truth table of oracle and accepts if it is in $\underline{\mathbf{P}}_{\mathrm{n}}$ (constructive)
$\operatorname{Pr}_{y}\left[M^{P_{y}}\left(1^{k}\right)=1\right]=0 \quad \operatorname{Pr}_{f_{n}}\left[M_{n}^{f}\left(1^{k}\right)=1\right] \geq(1 / 2)^{O(n)}$ (large)
- contradiction.

May 27, 2004
CS151 Lecture 17

Course summary

- Time and space

L, P, PSPACE, EXP

- Non-determinism

NL, NP, coNP, NEXP

- Non-uniformity

NC, P/poly

- Randomness

RL, ZPP, RP, coRP, BPP

- Alternation

PH, PSPACE

- Interaction

IP, MA, AM, PCP[log $n, 1]$

- Counting
\#P

May 27, 2004
CS151 Lecture 17
45

Natural Proofs

- To prove circuit lower bounds, we must either:
- Violate largeness: seize upon an incredibly specific feature of hard functions (one not possessed by a random function!)
- Violate constructivity: identify a feature of hard functions that cannot be computed efficiently from the truth table
- no "non-natural property" known for all but the very weakest models...

May 27, 2004
previous slide are probably distinct, except:

- P, ZPP, RP, coRP, BPP (probably all equal)
- L, RL, NL (probably all equal)
- NP, MA, AM (probably all equal)
- IP = PSPACE
- PCP[log n, 1] = NP
- Only real separations we know separate classes delimiting same resource:
- e.g. $L \neq$ PSPACE, NP \neq NEXP

May 27, $2004 \quad$ CS151 Lecture 17

The big picture

Remember:
possible explanation for failure to prove conjectured separations...
...is that they are false

The big picture

- I hope you take away:
- an ability to extract the essential features of a problem that make it hard/easy...
- knowledge and tools to connect computational problems you encounter with larger questions in complexity
- background needed to understand current research in this area

The last slide...

- background to contribute to current research in this area
- many open problems
- young field
- try your hand...

Thank you!

May 27, 2004
CS151 Lecture 17
50

[^0]: May 27, 2004

