CS151 Complexity Theory

Lecture 17 May 27, 2004

Outline

- elements of the proof of the PCP Theorem
- · counting problems
 - #P and its relation to other classes
 - complexity of computing the permanent
- proofs about proofs:
 - relativization
 - natural proofs
- · course summary

lay 27, 2004 CS151 Lecture 17

$NP \subset PCP[\log n, \text{ polylog } n]$

- Proof of Lemma (summary):
 - reducing 3-SAT to MAX-k-PCS gap problem
 - $\varphi(x_1, x_2, ..., x_n)$ instance of 3-SAT
 - set $m = O(\log n/\log\log n)$
 - $-H \subset F_q$ such that $|H|^m = n$ ($|H| = polylog n, q \approx |H|^3$)
 - generate $|F_q|^{3m+3}$ = poly(n) constraints:

$$C_Z = \bigwedge_{i=0...3m+3+1} C_{i, Z}$$

- each refers to assignment poly. Q and φ (via p_a)
- all polys degree d = O(m|H|) = polylog n
- either all are satisfied or at most $d/q = o(1) << \epsilon \,$

May 27, 2004 CS151 Lecture 17

$NP \subset PCP[\log n, \text{ polylog } n]$

- log n random bits to pick a constraint
- query assignment in polylog(n) locations to determine if constraint is satisfied
 - completeness 1
 - soundness (1-ε) if prover keeps promise to supply degree d polynomial
- prover can cheat by not supplying proof in expected form

May 27, 2004 CS151 Lecture 17 4

$NP \subset PCP[log \ n, \ polylog \ n]$

- Low-degree testing:
 - want: randomized procedure that is given d, oracle access to $f{:}(F_{\sigma})^m \to F_{\sigma}$
 - runs in poly(m, d) time
 - always accepts if deg(f) ≤ d
 - rejects with high probability if deg(f) > d
 - too much to ask. Why?

May 27, 2004 CS151 Lecture 17 5

$NP \subset PCP[log n, polylog n]$

<u>Definition</u>: functions f, g are δ -close if

 $Pr_x[f(x) \neq g(x)] \leq \delta$

<u>Lemma</u>: $\exists \ \delta > 0$ and a randomized procedure that is given d, oracle access to $f:(F_{\alpha})^m \to F_{\alpha}$

- runs in poly(m, d) time
- uses O(m log |F_a|) random bits
- always accepts if deg(f) ≤ d
- rejects with high probability if f is not δ -close to any g with deg(g) \leq d

$NP \subset PCP[\log n, polylog n]$

- idea of proof:
 - restrict to random line L
 - check if it is low degree

- always accepts if deg(f) ≤ d
- other direction much more complex

May 27, 2004 CS151 Lecture 17

NP ⊂ PCP[log n, polylog n]

- can only force prover to supply function f that is close to a low-degree polynomial
- how to bridge the gap?
- recall low-degree polynomials form an error correcting code (Reed-Muller)
- view "close" function as corrupted codeword

May 27, 2004 CS151 Lecture 17 8

$NP \subset PCP[\log n, \text{ polylog } n]$

- Self-correction:
 - want: randomized procedure that is given x, oracle access to $f:(F_q)^m \to (F_q)$ that is δ-close to a (unique) degree d polynomial g
 - runs in poly(m, d) time
 - uses $O(m log |F_q|)$ random bits
 - with high probability outputs g(x)

May 27, 2004 CS151 Lecture 17 9

$NP \subset PCP[\log n, \text{ polylog } n]$

Lemma: ∃ a randomized procedure that is given x, oracle access to $f:(F_q)^m \to (F_q)$ that is δ-close to a (unique) degree d polynomial g

- runs in poly(m, d) time
- uses O(m log |F_a|) random bits
- outputs g(x) with high probability

May 27, 2004 CS151 Lecture 17 10

$NP \subset PCP[log \ n, \ polylog \ n]$

- · idea of proof:
 - restrict to random line L passing through x
 - query points along line
 - apply error correction

May 27, 2004 CS151 Lecture 17 11

$NP \subset PCP[log n, polylog n]$

- Putting it all together:
 - given L ∈ NP and an instance x, verifier computes reduction to MAX-k-PCS gap problem
 - prover supplies proof in form

 $f{:}(\mathsf{F}_q)^m \to (\mathsf{F}_q)$

(plus some other info used for low-degree testing)

- verifier runs low-degree test
 - rejects if f not close to some low degree function g
- verifier picks random constraint C_i; checks if sat. by g
 - uses self-correction to get values of g from f
- accept if C_i satisfied; otherwise reject

Counting problems

- So far, we have ignored function problems

 given x, compute f(x)
- justification: usually easily reducible to related decision problem
- important class of function problems that don't seem to have this property:

counting problems

– e.g. given 3-CNF ϕ how many satisfying assignments are there?

May 27, 2004 CS151 Lecture 17 13

Counting problems

 #P is the class of function problems expressible as:

input x
$$f(x) = |\{y: (x, y) \in R\}|$$
 where $R \in \mathbf{P}$.

• compare to **NP** (decision problem)

$$\label{eq:fx} \text{input } x \qquad f(x) = \exists y : (x,\,y) \in \,R \,\,?$$
 where $R \in \,\textbf{P}.$

May 27, 2004 CS151 Lecture 17 14

Counting problems

- examples
 - -#SAT: given 3-CNF φ how many satisfying assignments are there?
 - -#CLIQUE: given (G, k) how many cliques of size at least k are there?

May 27, 2004 CS151 Lecture 17 1

Reductions

- Reduction from function problem f₁ to function problem f₂
 - two efficiently computable functions Q, A

27, 2004 CS151 Lecture 17 16

Reductions

- problem f is #P-complete if
 - f is in #P
 - every problem in #P reduces to f

 $\begin{array}{ccc}
 & \times & & & & \\
 & (\text{prob. 1}) & & & & & \\
 & & f_1 & & & & & \\
 & f_1(x) & & & & & f_2(y)
\end{array}$

- "parsimonious reduction": A is identity
 - many standard **NP**-completeness reductions are parsimonious
 - therefore: if #SAT is #P-complete we get lots of #P-complete problems

May 27, 2004 CS151 Lecture 17 17

#SAT

#SAT: given 3-CNF φ how many satisfying assignments are there?

Theorem: #SAT is #P-complete.

- Proof:
 - clearly in **#P**: $(\phi, A) \in R \Leftrightarrow A$ satisfies ϕ
 - take any f \in **#P** defined by R \in **P**

Relationship to other classes

 To compare to classes of decision problems, usually consider

P#P

which is a decision class...

- easy: NP, coNP ⊂ P^{#P}
- easy: P^{#P} ⊂ PSPACE

<u>Toda's Theorem</u>: PH ⊂ P^{#P}.

May 27, 2004 CS151 Lecture 17

Relationship to other classes

Question: is **#P** hard because it entails *finding* **NP** witnesses?

...or is counting difficult by itself?

May 27, 2004 CS151 Lecture 17 21

Bipartite Matchings

- · Definition:
 - -G = (U, V, E) bipartite graph with |U| = |V|
 - a perfect matching in G is a subset M ⊂ E
 that touches every node, and no two edges in
 M share an endpoint

May 27, 2004 CS151 Lecture 17 22

Bipartite Matchings

- Definition:
 - -G = (U, V, E) bipartite graph with |U| = |V|
 - a perfect matching in G is a subset M ⊂ E
 that touches every node, and no two edges in
 M share an endpoint

May 27, 2004 CS151 Lecture 17 23

Bipartite Matchings

 #MATCHING: given a bipartite graph G = (U, V, E) how many perfect matchings does it have?

Theorem: #MATCHING is **#P**-complete.

- But... can *find* a perfect matching in polynomial time!
 - counting itself must be difficult

The permanent

• The permanent of a matrix A is defined as:

 $per(A) = \Sigma_{\pi} \Pi_i A_i, _{\pi(i)}$

- # of perfect matchings in a bipartite graph G is exactly permanent of G's adjacency matrix A_G
 - a perfect matching defines a permutation that contributes 1 to the sum

May 27, 2004 CS151 Lecture 17 25

The permanent

- thus permanent is #P-complete
 - permanent also has many nice properties that make it a favorite of complexity theory
- contrast permanent (very hard)

$$per(A) = \Sigma_{\pi} \Pi_i A_i, _{\pi(i)}$$

to determinant (very easy):

$$det(A) = \Sigma_{\pi} sgn(\pi) \Pi_{i} A_{i},_{\pi(i)}$$

May 27, 2004

CS151 Lecture 17

Approaches to open problems

 Almost all major open problems we have seen entail proving lower bounds

– **P** ≠ **NP**

- P = BPP *

- L ≠ P

- NP = AM *

- P ≠ PSPACE

· we know circuit lower

- NC proper

bounds imply derandomization

- BPP ≠ EXP

· more difficult (and recent):

– **PH** proper

derandomization implies circuit lower bounds!

– P/poly ≠ EXP

May 27, 2004

CS151 Lecture 17

Approaches to open problems

- · two natural approaches
 - simulation+diagonalization (uniform)
 - circuit lower bounds (non-uniform)
- no success for either approach as applied to date

Why?

May 27, 2004

Lecture 17

Approaches to open problems

in a precise, formal sense these approaches are too powerful!

- if they could be used to resolve major open problems, a side effect would be:
 - proving something that is false, or
 - proving something that is believed to be false

May 27, 2004 CS151 Lecture 17 29

Relativization

- Many proofs and techniques we have seen relativize:
 - they hold after replacing all TMs with oracle
 TMs that have access to an oracle A

– e.g. $L^A \subset P^A$ for all oracles A

- e.g. PA ≠ EXPA for all oracles A

Relativization

- Idea: design an oracle A relative to which some statement is false
 - implies there can be no relativizing proof of that statement
 - e.g. design A for which $P^A = NP^A$
- Better: also design an oracle B relative to which statement is *true*
 - e.g. also design B for which PB ≠ NPB
 - implies no relativizing proof can resolve truth of the statement either way!

May 27, 2004 CS151 Lecture 17 3

Relativization

- Oracles are known that falsify almost every major conjecture concerning complexity classes
 - for these conjectures, non-relativizing proofs are required
 - almost all known proofs in Complexity relativize (sometimes after some reformulation)
 - notable exceptions:
 - The PCP Theorem
 - IP = PSPACE
 - most circuit lower bounds (more on these later)

ay 27, 2004 CS151 Lecture 17 32

Oracles for P vs. NP

- Goal:
 - oracle A for which $P^A = NP^A$
 - oracle B for which P^B ≠ NP^B
- · conclusion: resolving

P vs. NP

requires a non-relativizing proof

May 27, 2004 CS151 Lecture 17 3:

Oracles for P vs. NP

- for **P**^A = **NP**^A need A to be powerful
 - warning: intend to make P more powerful, but also make NP more powerful.
 - -e.g. A = SAT doesn't work
 - however A = QSAT works:

 $\textbf{PSPACE} \subset \textbf{P}^{\textbf{QSAT}} \subset \textbf{NP}^{\textbf{QSAT}} \subset \textbf{NPSPACE}$

and we know NPSPACE \subset PSPACE

May 27, 2004 CS151 Lecture 17 34

Oracles for P vs. NP

<u>Theorem</u>: there exists an oracle B for which $P^B \neq NP^B$.

- Proof:
 - define

 $L=\{1^k:\exists\ x\in\ B\ s.t.\ |x|=k\}$

- we will show $L \in \mathbf{NP}^{B} \mathbf{P}^{B}$.
- easy: $L \in NP^B$ (no matter what B is)

May 27, 2004 CS151 Lecture 17

Oracles for P vs. NP

- design B by diagonalizing against all "PB machines"
- M₁, M₂, M₃, ... is an enumeration of deterministic OTMs
- each machine appears infinitely often \Rightarrow all poly-time machines appear even if we force machine M_i to accept after $n^{\log n}$ steps
- $-B_i$ will be those strings of length $\leq i$ in B
- we build B_i after simulating machine M_i

Oracles for P vs. NP

 $L = \{1^k : \exists \ x \in \ B \ s.t. \ |x| = k\}$

- · Proof (continued):
 - maintain "exceptions" X that must not go in B
 - initially X = { }, B_0 = { }

Stage i:

- simulate M_i(1ⁱ) for ilog i steps
- when M_i makes an oracle query q:
 - if |q| < i, answer using B_{i-1}
- if |q| ≥ i, answer "no"; add q to X
- if simulated M_i accepts 1ⁱ then B_i = B_{i-1}
- if simulated M_i rejects 1ⁱ, $B_i = B_{i-1} \cup \{x \in \{0,1\}^i : x \notin X\}$

May 27, 2004 CS151 Lecture 17 3

Oracles for P vs. NP

 $L = \{1^k : \exists x \in B \text{ s.t. } |x| = k\}$

- Proof (continued):
 - if M_i accepts, we ensure no strings of length i in B
 - therefore $1^i \notin L$, and M_i does not decide L
 - if M_i rejects, we ensure some string of length i in B
 - Why?

 $B_i=B_{i\text{-}1}\cup\{x\in\{0,1\}^i:x\not\in X\}$ and |X| is at most $\Sigma_{i\le i}j^{log\,j}<<2^i$

- therefore $1^i \in L$, and M_i does not decide L
- Conclude: L ∉ PB

2004 CS151 Lecture 17

Circuit lower bounds

- · Relativizing techniques are out...
- but most circuit lower bound techniques do not relativize
- exponential circuit lower bounds known for weak models:
 - e.g. constant-depth poly-size circuits
- But, utter failure (so far) for more general models. Why?

May 27, 2004 CS151 Lecture 17 3

Natural Proofs

- Razborov and Rudich defined the following "natural" format for circuit lower bounds:
 - identify property $\underline{\mathbf{P}}$ of functions $f:\{0,1\}^* \to \{0,1\}$
 - $-\underline{\mathbf{P}} = \bigcup_{n} \underline{\mathbf{P}}_{n}$ is a natural property if:
 - (useful) $\forall n f_n \in \underline{P}_n$ implies f does not have polysize circuits
 - (constructive) can decide " $f_n \in \underline{P}_n$?" in poly time given the *truth table* of f_n
 - (large) at least (½)^{O(n)} fraction of all 2^{2ⁿ} functions on n bits are in P_n
- show some function family $g = \{g_n\}$ is in $\underline{\mathbf{P}}_n$

27, 2004 CS151 Lecture 17 40

Natural Proofs

 all known circuit lower bounds are natural for a suitably parameterized version of the definition

Theorem (RR): if there is a $2^{n\delta}$ -OWF, then there is no natural property **P**.

- factoring believed to be 2^{nδ}-OWF
- general version also rules out natural properties useful for proving many other separations, under similar cryptographic assumptions

May 27, 2004 CS151 Lecture 17 41

Natural Proofs

- Proof sketch:
 - main tool: pseudo-random functions
 - ensemble $F_k = \{p_y: \{0,1\}^{n(k)} \rightarrow \{0,1\}\}_{y \in \{0,1\}^k}$
 - $-F = \bigcup_{k} F_{k}$ is t(k)-pseudo-random if
 - \bullet given y, x, can compute $\textbf{p}_{\textbf{y}}(\textbf{x})$ in poly(|y|, |x|) time
 - for every prob. TM M running in time t(k):

 $|Pr_{v}[M^{p_{y}}(1^{k}) = 1] - Pr_{f_{n}}[M^{f_{n}}(1^{k}) = 1]| \le 1/t$

- can construct from (BMY-style) PRGs
- $-2^{n\delta}$ -OWF implies 2^{cn}-pseudo-random functions ∀ c

Natural Proofs

(useful) \forall n $f_n \in \underline{P}_n \Rightarrow$ f does not have poly-size circuits (constructive) " $f_n \in \underline{P}_n$?" in poly time given $truth\ table$ of f_n (large) at least (½) $^{O(n)}$ fraction of all 2^{2^n} fns. on n-bits in \underline{P}_n

- Proof sketch (continued):
 - pseudo-random function p_y has poly-size circuits, and so $p_v \not\in \mathbf{P}_n$ (useful)
 - Define OTM M so that M(1^k) reads 2^{n(k)} -size truth table of oracle and accepts if it is in P_n (constructive)
 - $Pr_{v}[M^{p_{y}}(1^{k})=1]=0$ $Pr_{f_{n}}[M^{f_{n}}(1^{k})=1] \ge (\frac{1}{2})^{O(n)}$ (large)
 - contradiction.

av 27, 2004 CS

CS151 Lecture 17

Natural Proofs

- To prove circuit lower bounds, we must either:
 - Violate largeness: seize upon an incredibly specific feature of hard functions (one not possessed by a random function!)
 - Violate constructivity: identify a feature of hard functions that cannot be computed efficiently from the truth table
- no "non-natural property" known for all but the very weakest models...

May 27, 2004 CS151 Lecture 17 44

Course summary

Time and space L, P, PSPACE, EXP
 Non-determinism NL, NP, coNP, NEXP

• Non-uniformity NC, P/poly

• Randomness RL, ZPP, RP, coRP, BPP

• Alternation PH, PSPACE

• Interaction IP, MA, AM, PCP[log n, 1]

• Counting #P

May 27, 2004 CS151 Lecture 17 45

The big picture

- All classes on previous slide are probably distinct, except:
 - P, ZPP, RP, coRP, BPP (probably all equal)
 - L, RL, NL (probably all equal)
 - NP, MA, AM (probably all equal)
 - -IP = PSPACE
 - PCP[log n, 1] = NP
- Only real separations we know separate classes delimiting same resource:
 - e.g. L ≠ PSPACE, NP ≠ NEXP

May 27, 2004 CS151 Lecture 17 46

The big picture

Remember:

possible explanation for failure to prove conjectured separations...

...is that they are false

May 27, 2004 CS151 Lecture 17 47

The big picture

- · Important techniques/ideas:
 - simulation and diagonalization
 - reductions and completeness
 - self-reducibility
 - encoding information using low-degree polynomials
 - randomness
 - others...

The big picture

- I hope you take away:
 - an ability to extract the essential features of a problem that make it hard/easy...
 - knowledge and tools to connect computational problems you encounter with larger questions in complexity
 - background needed to understand current research in this area

May 27, 2004 CS151 Lecture 17 49

The last slide...

- background to contribute to current research in this area
 - many open problems
 - young field
 - try your hand...

Thank you!