
1

CS151
Complexity Theory

Lecture 17
May 27, 2004

May 27, 2004 CS151 Lecture 17 2

Outline

• elements of the proof of the PCP Theorem
• counting problems

– #P and its relation to other classes
– complexity of computing the permanent

• proofs about proofs:
– relativization

– natural proofs

• course summary

May 27, 2004 CS151 Lecture 17 3

NP ⊂ PCP[log n, polylog n]

• Proof of Lemma (summary):
– reducing 3-SAT to MAX-k-PCS gap problem
– � (x1, x2,…, xn) instance of 3-SAT
– set m = O(log n/loglog n)
– H ⊂ Fq such that |H|m = n (|H| = polylog n, q ≈ |H|3)
– generate |Fq|3m+3 = poly(n) constraints:

CZ = ∧i=0…3m+3+1 Ci, Z

– each refers to assignment poly. Q and � (via pa’)
– all polys degree d = O(m|H|) = polylog n
– either all are satisfied or at most d/q = o(1) << �

May 27, 2004 CS151 Lecture 17 4

NP ⊂ PCP[log n, polylog n]

• log n random bits to pick a constraint
• query assignment in polylog(n) locations to

determine if constraint is satisfied
– completeness 1

– soundness (1-ε) if prover keeps promise to
supply degree d polynomial

• prover can cheat by not supplying proof in
expected form

May 27, 2004 CS151 Lecture 17 5

NP ⊂ PCP[log n, polylog n]

• Low-degree testing:
– want: randomized procedure that is given d,

oracle access to f:(Fq)m → Fq

• runs in poly(m, d) time

• always accepts if deg(f) � d
• rejects with high probability if deg(f) > d

– too much to ask. Why?

May 27, 2004 CS151 Lecture 17 6

NP ⊂ PCP[log n, polylog n]

Definition: functions f, g are � -close if
Prx[f(x) � g(x)] ≤ �

Lemma: ∃ � > 0 and a randomized procedure that
is given d, oracle access to f:(Fq)m → Fq

– runs in poly(m, d) time

– uses O(m log |Fq|) random bits
– always accepts if deg(f) � d

– rejects with high probability if f is not � -close
to any g with deg(g) � d

2

May 27, 2004 CS151 Lecture 17 7

NP ⊂ PCP[log n, polylog n]

• idea of proof:
– restrict to random line L

– check if it is low degree

– always accepts if deg(f) � d

– other direction much more complex

����
�

May 27, 2004 CS151 Lecture 17 8

NP ⊂ PCP[log n, polylog n]

– can only force prover to supply function f that
is close to a low-degree polynomial

– how to bridge the gap?

– recall low-degree polynomials form an error
correcting code (Reed-Muller)

– view “close” function as corrupted codeword

May 27, 2004 CS151 Lecture 17 9

NP ⊂ PCP[log n, polylog n]

• Self-correction:
– want: randomized procedure that is given x,

oracle access to f:(Fq)m → (Fq) that is � -close
to a (unique) degree d polynomial g
• runs in poly(m, d) time

• uses O(m log |Fq|) random bits

• with high probability outputs g(x)

May 27, 2004 CS151 Lecture 17 10

NP ⊂ PCP[log n, polylog n]

Lemma: ∃ a randomized procedure that is
given x, oracle access to f:(Fq)m → (Fq)
that is � -close to a (unique) degree d
polynomial g
– runs in poly(m, d) time
– uses O(m log |Fq|) random bits

– outputs g(x) with high probability

May 27, 2004 CS151 Lecture 17 11

NP ⊂ PCP[log n, polylog n]

• idea of proof:
– restrict to random line L passing through x

– query points along line

– apply error correction

����
�

May 27, 2004 CS151 Lecture 17 12

NP ⊂ PCP[log n, polylog n]

• Putting it all together:
– given L ∈ NP and an instance x, verifier computes

reduction to MAX-k-PCS gap problem
– prover supplies proof in form

f:(Fq)m → (Fq)
(plus some other info used for low-degree testing)

– verifier runs low-degree test
• rejects if f not close to some low degree function g

– verifier picks random constraint Ci; checks if sat. by g
• uses self-correction to get values of g from f

– accept if Ci satisfied; otherwise reject

3

May 27, 2004 CS151 Lecture 17 13

Counting problems

• So far, we have ignored function problems
– given x, compute f(x)

• justification: usually easily reducible to
related decision problem

• important class of function problems that
don’t seem to have this property:

counting problems
– e.g. given 3-CNF � how many satisfying

assignments are there?

May 27, 2004 CS151 Lecture 17 14

Counting problems

• #P is the class of function problems
expressible as:

input x f(x) = |{y : (x, y) ∈ R}|

where R ∈ P.

• compare to NP (decision problem)

input x f(x) = ∃y : (x, y) ∈ R ?
where R ∈ P.

May 27, 2004 CS151 Lecture 17 15

Counting problems

• examples
– #SAT: given 3-CNF � how many satisfying

assignments are there?

– #CLIQUE: given (G, k) how many cliques of
size at least k are there?

May 27, 2004 CS151 Lecture 17 16

Reductions

• Reduction from function problem f1 to
function problem f2
– two efficiently computable functions Q, A

�
����	
���

����	
���

���������

�

�

����

May 27, 2004 CS151 Lecture 17 17

Reductions
• problem f is #P-complete if

– f is in #P
– every problem in #P

reduces to f

• “parsimonious reduction”: A is identity
– many standard NP-completeness reductions

are parsimonious
– therefore: if #SAT is #P-complete we get lots

of #P-complete problems

�
����	
���

����	
���

���������

�

�
����

May 27, 2004 CS151 Lecture 17 18

#SAT

#SAT: given 3-CNF � how many satisfying
assignments are there?

Theorem: #SAT is #P-complete.

• Proof:
– clearly in #P: (� , A) ∈ R ⇔ A satisfies �
– take any f ∈ #P defined by R ∈ P

4

May 27, 2004 CS151 Lecture 17 19

#SAT

– add new variables z, produce � such that
∃z � (x, y, z) = 1 ⇔ C(x, y) = 1

– for (x, y) such that C(x, y) = 1 this z is unique
– hardwire x
– # satisfying assignments = |{y : (x, y) ∈ R}|

��� ��

�

���������������
���������� ������∈ ��

f(x) =

|{y : (x, y) ∈ R}|

May 27, 2004 CS151 Lecture 17 20

Relationship to other classes

• To compare to classes of decision
problems, usually consider

P#P

which is a decision class…
• easy: NP, coNP ⊂ P#P

• easy: P#P ⊂ PSPACE

Toda’s Theorem: PH ⊂ P#P.

May 27, 2004 CS151 Lecture 17 21

Relationship to other classes

Question: is #P hard because it entails
finding NP witnesses?

…or is counting difficult by itself?

May 27, 2004 CS151 Lecture 17 22

Bipartite Matchings

• Definition:
– G = (U, V, E) bipartite graph with |U| = |V|

– a perfect matching in G is a subset M ⊂ E
that touches every node, and no two edges in
M share an endpoint

May 27, 2004 CS151 Lecture 17 23

Bipartite Matchings

• Definition:
– G = (U, V, E) bipartite graph with |U| = |V|

– a perfect matching in G is a subset M ⊂ E
that touches every node, and no two edges in
M share an endpoint

May 27, 2004 CS151 Lecture 17 24

Bipartite Matchings

• #MATCHING: given a bipartite graph
G = (U, V, E) how many perfect
matchings does it have?

Theorem: #MATCHING is #P-complete.
• But… can find a perfect matching in

polynomial time!
– counting itself must be difficult

5

May 27, 2004 CS151 Lecture 17 25

The permanent

• The permanent of a matrix A is defined as:
per(A) = ����� iAi, � (i)

• # of perfect matchings in a bipartite graph
G is exactly permanent of G’s adjacency
matrix AG

– a perfect matching defines a permutation that
contributes 1 to the sum

May 27, 2004 CS151 Lecture 17 26

The permanent

• thus permanent is #P-complete
– permanent also has many nice properties that

make it a favorite of complexity theory

• contrast permanent (very hard)
per(A) = ����� iAi, � (i)

to determinant (very easy):

det(A) = ��� sgn(�) � iAi, � (i)

May 27, 2004 CS151 Lecture 17 27

Approaches to open problems

• Almost all major open problems we have
seen entail proving lower bounds
– P � NP - P = BPP *
– L � P - NP = AM *
– P � PSPACE
– NC proper
– BPP � EXP
– PH proper
– P/poly � EXP

� ��!�� ���������"� ���
	����#����"����$�����%$����

� ������������"���$����������&�
���$�����%$���� ���"��#�
��������"� ���	����#'

May 27, 2004 CS151 Lecture 17 28

Approaches to open problems

• two natural approaches
– simulation+diagonalization (uniform)

– circuit lower bounds (non-uniform)

• no success for either approach as applied
to date

Why?

May 27, 2004 CS151 Lecture 17 29

Approaches to open problems

in a precise, formal sense
these approaches are

too powerful !

• if they could be used to resolve major
open problems, a side effect would be:
– proving something that is false, or
– proving something that is believed to be false

May 27, 2004 CS151 Lecture 17 30

Relativization
• Many proofs and techniques we have

seen relativize:
– they hold after replacing all TMs with oracle

TMs that have access to an oracle A

– e.g. LA ⊂ PA for all oracles A

– e.g. PA � EXPA for all oracles A

6

May 27, 2004 CS151 Lecture 17 31

Relativization

• Idea: design an oracle A relative to which some
statement is false
– implies there can be no relativizing proof of that

statement
– e.g. design A for which PA = NPA

• Better: also design an oracle B relative to which
statement is true
– e.g. also design B for which PB � NPB

– implies no relativizing proof can resolve truth of the
statement either way !

May 27, 2004 CS151 Lecture 17 32

Relativization

• Oracles are known that falsify almost every
major conjecture concerning complexity classes
– for these conjectures, non-relativizing proofs are

required
– almost all known proofs in Complexity relativize

(sometimes after some reformulation)
– notable exceptions:

• The PCP Theorem
• IP = PSPACE
• most circuit lower bounds (more on these later)

May 27, 2004 CS151 Lecture 17 33

Oracles for P vs. NP

• Goal:
– oracle A for which PA = NPA

– oracle B for which PB � NPB

• conclusion: resolving
P vs. NP

requires a non-relativizing proof

May 27, 2004 CS151 Lecture 17 34

Oracles for P vs. NP

• for PA = NPA need A to be powerful
– warning: intend to make P more powerful, but

also make NP more powerful.

– e.g. A = SAT doesn’t work

– however A = QSAT works:

PSPACE ⊂ PQSAT ⊂ NPQSAT ⊂ NPSPACE

and we know NPSPACE ⊂ PSPACE

May 27, 2004 CS151 Lecture 17 35

Oracles for P vs. NP

Theorem: there exists an oracle B for which
PB � NPB.

• Proof:
– define

L = {1k : ∃ x ∈ B s.t. |x| = k}
– we will show L ∈ NPB – PB.
– easy: L ∈ NPB (no matter what B is)

May 27, 2004 CS151 Lecture 17 36

Oracles for P vs. NP

– design B by diagonalizing against all

“PB machines”
– M1, M2, M3, … is an enumeration of

deterministic OTMs

– each machine appears infinitely often � all
poly-time machines appear even if we force
machine Mi to accept after nlog n steps

– Bi will be those strings of length ≤ i in B
– we build Bi after simulating machine Mi

7

May 27, 2004 CS151 Lecture 17 37

Oracles for P vs. NP

L = {1k : ∃ x ∈ B s.t. |x| = k}

• Proof (continued):
– maintain “exceptions” X that must not go in B
– initially X = { }, B0 = { }
Stage i:
– simulate Mi(1i) for ilog i steps
– when Mi makes an oracle query q:

• if |q| < i, answer using Bi-1

• if |q| ≥ i, answer “no”; add q to X
– if simulated Mi accepts 1i then Bi = Bi-1

– if simulated Mi rejects 1i, Bi = Bi-1 ∪ {x ∈ {0,1}i : x ∉ X}

May 27, 2004 CS151 Lecture 17 38

Oracles for P vs. NP

L = {1k : ∃ x ∈ B s.t. |x| = k}

• Proof (continued):
– if Mi accepts, we ensure no strings of length i in B
– therefore 1i ∉ L, and Mi does not decide L
– if Mi rejects, we ensure some string of length i in B
– Why?

Bi = Bi-1 ∪ {x ∈ {0,1}i : x ∉ X}
and |X| is at most � j ≤ i jlog j << 2i

– therefore 1i ∈ L, and Mi does not decide L
– Conclude: L ∉ PB

May 27, 2004 CS151 Lecture 17 39

Circuit lower bounds

• Relativizing techniques are out…
• but most circuit lower bound techniques do

not relativize
• exponential circuit lower bounds known for

weak models:
– e.g. constant-depth poly-size circuits

• But, utter failure (so far) for more general
models. Why?

May 27, 2004 CS151 Lecture 17 40

Natural Proofs

• Razborov and Rudich defined the following
“natural” format for circuit lower bounds:
– identify property P of functions f:{0,1}* → {0,1}
– P = ∪n Pn is a natural property if:

• (useful) ∀n fn ∈ Pn implies f does not have poly-
size circuits

• (constructive) can decide “fn ∈ Pn?” in poly time
given the truth table of fn

• (large) at least (½)O(n) fraction of all 22n functions
on n bits are in Pn

– show some function family g = {gn} is in Pn

May 27, 2004 CS151 Lecture 17 41

Natural Proofs

• all known circuit lower bounds are natural
for a suitably parameterized version of the
definition

Theorem (RR): if there is a 2n
�
-OWF, then

there is no natural property P.
– factoring believed to be 2n � -OWF
– general version also rules out natural

properties useful for proving many other
separations, under similar cryptographic
assumptions

May 27, 2004 CS151 Lecture 17 42

Natural Proofs

• Proof sketch:
– main tool: pseudo-random functions
– ensemble Fk={py:{0,1}n(k)→{0,1}}y ∈{0,1}k

– F = ∪kFk is t(k)-pseudo-random if
• given y, x, can compute py(x) in poly(|y|, |x|) time
• for every prob. TM M running in time t(k):

|Pry[M
py(1k) = 1] – Prfn

[Mfn(1k) = 1]| ≤ 1/t

– can construct from (BMY-style) PRGs
– 2n � -OWF implies 2cn-pseudo-random functions ∀ c

8

May 27, 2004 CS151 Lecture 17 43

Natural Proofs

(useful) ∀n fn ∈ Pn� f does not have poly-size circuits
(constructive) “fn ∈ Pn?” in poly time given truth table of fn
(large) at least (½)O(n) fraction of all 22n fns. on n-bits in Pn

• Proof sketch (continued):
– pseudo-random function py has poly-size circuits, and

so py ∉ Pn (useful)

– Define OTM M so that M(1k) reads 2n(k) -size truth
table of oracle and accepts if it is in Pn (constructive)

Pry[M
py(1k)=1]=0 Prfn

[Mfn(1k) = 1] ≥ (½)O(n) (large)
– contradiction.

May 27, 2004 CS151 Lecture 17 44

Natural Proofs
• To prove circuit lower bounds, we must

either:
– Violate largeness: seize upon an incredibly

specific feature of hard functions (one not
possessed by a random function !)

– Violate constructivity: identify a feature of hard
functions that cannot be computed efficiently
from the truth table

• no “non-natural property” known for all but
the very weakest models…

May 27, 2004 CS151 Lecture 17 45

Course summary

• Time and space L, P, PSPACE, EXP
• Non-determinism NL, NP, coNP, NEXP
• Non-uniformity NC, P/poly
• Randomness RL, ZPP, RP, coRP, BPP
• Alternation PH, PSPACE
• Interaction IP, MA, AM, PCP[log n, 1]
• Counting #P

May 27, 2004 CS151 Lecture 17 46

The big picture

• All classes on previous slide are probably
distinct, except:
– P, ZPP, RP, coRP, BPP (probably all equal)
– L, RL, NL (probably all equal)
– NP, MA, AM (probably all equal)
– IP = PSPACE
– PCP[log n, 1] = NP

• Only real separations we know separate classes
delimiting same resource:
– e.g. L � PSPACE, NP � NEXP

May 27, 2004 CS151 Lecture 17 47

The big picture

Remember:

possible explanation for failure to prove
conjectured separations…

…is that they are false

May 27, 2004 CS151 Lecture 17 48

The big picture

• Important techniques/ideas:
– simulation and diagonalization

– reductions and completeness

– self-reducibility
– encoding information using low-degree

polynomials

– randomness

– others…

9

May 27, 2004 CS151 Lecture 17 49

The big picture

• I hope you take away:
– an ability to extract the essential features of a

problem that make it hard/easy…

– knowledge and tools to connect
computational problems you encounter with
larger questions in complexity

– background needed to understand current
research in this area

May 27, 2004 CS151 Lecture 17 50

The last slide…

– background to contribute to current research
in this area

• many open problems

• young field
• try your hand…

Thank you!

