

Optimization Problems

- many hard problems (especially NP-hard) are optimization problems
- e.g. find shortest TSP tour
- e.g. find smallest vertex cover
- e.g. find largest clique
- may be minimization or maximization problem
- "opt" = value of optimal solution

CS151 Lecture 16
3

Outline

- approximation algorithms
- Probabilistically Checkable Proofs
- elements of the proof of the PCP Theorem

May 25, 2004

Approximation Algorithms

- often happy with approximately optimal solution
- warning: lots of heuristics
- we want approximation algorithm with guaranteed approximation ratio of r
- meaning: on every input x, output is guaranteed to have value
at most r*opt for minimization
at least opt/r for maximization
May 25, 2004
CS151 Lecture 16

Gap producing reductions

- r-gap-producing reduction:
- f computable in poly time
$-x \in L_{1} \Rightarrow \operatorname{opt}(f(x)) \leq k$
$-x \notin \mathrm{~L}_{1} \Rightarrow \operatorname{opt}(\mathrm{f}(\mathrm{x}))>\mathrm{rk}$
- for max. problems use " $\geq \mathrm{k}$ " and " $<\mathrm{k} / \mathrm{r}$ "
- Note: target problem is not a language
- promise problem (yes \cup no not all strings)
- "promise": instances always from (yes \cup no)

May 25,2004
CS151 Lecture 16
6

Gap preserving reductions

- Example gap-preserving reduction:
- reduce MAX-k-SAT with gap ε,
- to MAX-3-SAT with gap $\varepsilon^{\prime} \longrightarrow$ constants
- "MAX-k-SAT is NP-hard to approx. within $\varepsilon \Rightarrow$ MAX-3-SAT is NP-hard to approx. within ε^{\prime} "
- MAXSNP (PY) - a class of problems reducible to each other in this way
- PTAS for MAXSNP-complete problem iff PTAS for all problems in MAXSNP

Missing link: first gap-producing reduction - history's guide
it should have something to do with SAT

- Definition: MAX-k-SAT with gap ε
- instance: k-CNF φ
- YES: some assignment satisfies all clauses
- NO: no assignment satisfies more than ($1-\varepsilon$) fraction of clauses

Proof systems viewpoint

- k-SAT NP-hard \Rightarrow for any language $L \in$ NP proof system of form:
- given x, compute reduction to k-SAT: φ_{x}
- expected proof is satisfying assignment for φ_{x}
- verifier picks random clause ("local test") and checks that it is satisfied by the assignment

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}[\text { verifier accepts] }=1 \\
& x \notin L \Rightarrow \operatorname{Pr}[\text { verifier accepts }]<1
\end{aligned}
$$

Proof systems viewpoint

- MAX-k-SAT with gap ε NP-hard \Rightarrow for any language $L \in N P$ proof system of form:
- given x, compute reduction to MAX-k-SAT: φ_{x}
- expected proof is satisfying assignment for φ_{x}
- verifier picks random clause ("local test") and
checks that it is satisfied by the assignment

$$
x \in L \Rightarrow \operatorname{Pr}[\text { verifier accepts }]=1
$$

$x \notin L \Rightarrow \operatorname{Pr}[$ verifier accepts $] \leq(1-\varepsilon)$

- can repeat $O(1 / \varepsilon)$ times for error < $1 / 2$

May 25, 2004
CS151 Lecture 16

Proof systems viewpoint

- can think of reduction showing k-SAT NP-hard as designing a proof system for NP in which: - verifier only performs local tests
- can think of reduction showing MAX-k-SAT with gap ε NP-hard as designing a proof system for NP in which:
- verifier only performs local tests
- invalidity of proof* evident all over: "holographic proof" and an ε fraction of tests notice such invalidity
May 25, 2004
CS151 Lecture 16
13

PCP

- Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
- pick random local test
- query proof in specified k locations
- accept iff passes test
- fancy name for a NP-hardness reduction

PCP

- PCP[r(n), $q(n)]$: set of languages L with p.p.t. verifier V that has (r, q)-restricted access to a string "proof"
- V tosses $\mathrm{O}(\mathrm{r}(\mathrm{n})$) coins
- V accesses proof in $\mathrm{O}(\mathrm{q}(\mathrm{n})$) locations
- (completeness) $x \in L \Rightarrow \exists$ proof such that
$\operatorname{Pr}[\mathrm{V}(\mathrm{x}$, proof) accepts $]=1$
- (soundness) $x \notin L \Rightarrow \forall$ proof*
$\operatorname{Pr}\left[\mathrm{V}\left(\mathrm{x}\right.\right.$, proof $\left.^{*}\right)$ accepts $] \leq 1 / 2$

PCP

- Two observations:
- PCP[1, poly n] = NP
proof?
$-P C P[\log n, 1] \subset N P$ proof?

The PCP Theorem (AS, ALMSS):
PCP $[\log n, 1]=N P$.

May 25, 2004
CS151 Lecture 16
16

PCP

Corollary: MAX-k-SAT is NP-hard to approximate to within some constant ε. - using PCP[log $n, 1]$ protocol for, say, VC

- enumerate all $2^{\mathrm{O}(\log n)}=$ poly (n) sets of queries
- construct a $k-C N F \varphi_{i}$ for verifier's test on each
- note: k -CNF since function on only k bits
- "YES" VC instance \Rightarrow all clauses satisfiable
- "NO" VC instance \Rightarrow every assignment fails to satisfy at least $1 / 2$ of the $\varphi_{i} \Rightarrow$ fails to satisfy an $\varepsilon=(1 / 2) 2^{-k}$ fraction of clauses.
May 25, 2004
CS151 Lecture 16

The PCP Theorem

- Elements of proof:
- arithmetization of 3-SAT
- we will do this
- low-degree test
- we will state but not prove this
- self-correction of low-degree polynomials
- we will state but not prove this
- proof composition
- we will describe the idea

May 25, 2004
CS151 Lecture 16
18

The PCP Theorem

- Two major components:
- NP \subset PCP[log n, polylog $n]$ ("outer verifier")
- we will prove this from scratch, assuming lowdegree test, and self-correction of low-degree polynomials
$-\mathbf{N P} \subset \mathbf{P C P}\left[n^{3}\right.$, 1] ("inner verifier")
- we will not prove

May 25, 2004

Proof Composition (idea)

$N P \subset P C P[\log n$, polylog $n]$ ("outer verifier") $N P \subset P C P\left[n^{3}, 1\right]$ ("inner verifier")

- composition of verifiers (continued):
- final proof contains proof that $C\left(r_{1}, r_{2}, r_{3}\right)=1$ for inner verifier's use
- use inner verifier to verify that $C\left(r_{1}, r_{2}, r_{3}\right)=1$
- O(log n)+polylog n randomness
- O(1) queries
- tricky issue: consistency

May 25, 2004
CS151 Lecture 16

Proof Composition (idea)

$N P \subset P C P[\log n$, polylog $n]$ ("outer verifier") $\mathrm{NP} \subset \mathbf{P C P}\left[\mathrm{n}^{3}, 1\right]$ ("inner verifier")

- composition of verifiers:
- reformulate "outer" so that it uses $\mathrm{O}(\log n$) random bits to make 1 query to each of 3 provers
- replies r_{1}, r_{2}, r_{3} have length polylog n
- Key: accept/reject decision computable from r_{1}, r_{2}, r_{3} by small circuit C

May 25, 2004

Proof Composition (idea)

- NP \subset PCP[log $n, 1]$ comes from
- repeated composition
- PCP[log n, polylog n] with PCP[log n, polylog n] yields PCP $[\log n$, polyloglog $n]$
- PCP[log n, polyloglog $n]$ with PCP[$\left.n^{3}, 1\right]$ yields

PCP[log $n, 1]$

- many details omitted...

May 25, 2004
CS151 Lecture 16
22

The outer verifier

Theorem: NP \subset PCP[log n, polylog $n]$

Proof (first steps):

- define: Polynomial Constraint Satisfaction (PCS) problem
- prove: PCS gap problem is NP-hard

$\mathbf{N P} \subset \mathbf{P C P}[\log \mathbf{n}$, polylog n$]$

- MAX-k-SAT
- given: k-CNF φ
- output: max. \# of simultaneously satisfiable clauses
- generalization: MAX-k-CSP
- given:
- variables $x_{1}, x_{2}, \ldots, x_{n}$ taking values from set S
- k-ary constraints $C_{1}, C_{2}, \ldots, C_{t}$
- output: max. \# of simultaneously satisfiable constraints
May 25, 2004
CS151 Lecture 16
24

$\mathbf{N P} \subset$ PCP[log \mathbf{n}, polylog n$]$

- algebraic version: MAX-k-PCS - given:
- variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ taking values from field F_{q}
- $\mathrm{n}=\mathrm{q}^{\mathrm{m}}$ for some integer m
- k-ary constraints $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{t}}$
- assignment viewed as $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$
- output: max. \# of constraints simultaneously satisfiable by an assignment that has deg. $\leq \mathrm{d}$

NP \subset PCP[log n, polylog $n]$

Lemma: for every constant $1>\varepsilon>0$, the MAX-k-PCS gap problem with
$t k$-ary constraints with $k=$ polylog(n)
field size $q=\operatorname{polylog}(n)$
$n=q^{m}$ variables with $m=O(\log n / \log \log n)$
degree of assignments $d=\operatorname{polylog}(n)$
gap ε
is NP-hard.

May 25, 2004

NP \subset PCP $[\log n$, polylog $n]$

tk -ary constraints with $\mathrm{k}=\operatorname{polylog}(\mathrm{n})$
field size $q=\operatorname{polylog}(n)$
$n=q^{m}$ variables with $m=O(\log n / \log \log n)$ degree of assignments $d=$ polylog(n)

- check: headed in right direction
- log n random bits to pick a constraint
- query assignment in polylog(n) locations to determine if it is satisfied
- completeness 1 ; soundness $1-\varepsilon$
(if prover keeps promise to supply degree d polynomial)

$N P \subset P C P[\log n$, polylog $n]$

- Proof of Lemma:
- reduce from 3-SAT
- 3-CNF $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- can encode as $\psi:[\mathrm{n}] \times[\mathrm{n}] \times[\mathrm{n}] \times\{0,1\}^{3} \rightarrow\{0,1\}$
$-\psi\left(i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}\right)=1$ iff φ contains clause

$$
\left(\mathrm{x}_{\mathrm{i}_{1}}{ }^{\mathrm{b}_{1}} \vee \mathrm{x}_{\mathrm{i}_{2}}{ }^{\mathrm{b}_{2}} \vee \mathrm{x}_{\mathrm{i}_{3}}{ }^{\mathrm{b}_{3}}\right)
$$

- e.g. $\left(x_{3} \vee \neg x_{5} \vee x_{2}\right) \Rightarrow \psi(3,5,2,1,0,1)=1$

$\mathbf{N P} \subset \mathbf{P C P}[\log \mathbf{n}$, polylog $\mathbf{n}]$

$$
\begin{aligned}
& \text { - pick } H \subset F_{q} \text { with }\{0,1\} \subset H,|H|=\text { polylog } n \\
& \text { - pick } m=O(\log n / \log \log n) \text { so }|H|^{m}=n \\
& \text { - identify }[n] \text { with } H^{m} \\
& \text { - } \psi: H^{\mathrm{m}} \times H^{\mathrm{m}} \times H^{\mathrm{m}} \times H^{3} \rightarrow\{0,1\} \text { encodes } \varphi \\
& \text { - assignment a:H } H^{\mathrm{m}} \rightarrow\{0,1\} \\
& \text { - Key: a satisfies } \varphi \text { iff } \forall \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} \\
& \psi\left(\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)=0 \text { or } \\
& \qquad \mathrm{a}\left(\mathrm{i}_{1}\right)=\mathrm{b}_{1} \text { or } a\left(\mathrm{i}_{2}\right)=\mathrm{b}_{2} \text { or } a\left(\mathrm{i}_{3}\right)=\mathrm{b}_{3}
\end{aligned}
$$

$N P \subset P C P[\log n$, polylog $n]$

$\psi: \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{\mathrm{m}} \times \mathrm{H}^{3} \rightarrow\{0,1\}$ encodes φ a satisfies φ iff $\forall \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$
$\psi\left(i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}\right)=0$ or $a\left(i_{1}\right)=b_{1}$ or $a\left(i_{2}\right)=b_{2}$ or $a\left(i_{3}\right)=b_{3}$

- extend ψ to a function $\psi^{\prime}:\left(\mathrm{F}_{\mathrm{q}}\right)^{3 m+3} \rightarrow \mathrm{~F}_{\mathrm{q}}$ with degree at most $|\mathrm{H}|$ in each variable
- can extend any assignment $\mathrm{a}: \mathrm{H}^{\mathrm{m}} \rightarrow\{0,1\}$ to $a^{\prime}:\left(F_{q}\right)^{m} \rightarrow F_{q}$ with degree $|H|$ in each variable

$\mathbf{N P} \subset \mathbf{P C P}[\log \mathrm{n}$, polylog n$]$

$\psi^{\prime}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ encodes φ
$a^{\prime}:\left(F_{q}\right)^{m} \rightarrow F_{q}$ s.a. iff $\forall\left(i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}\right) \in H^{3 m+3}$
$p_{a^{\prime}}\left(i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}\right)=0$

- note: $\operatorname{deg}\left(\mathrm{p}_{\mathrm{a}^{\prime}}\right) \leq 2(3 m+3)|\mathrm{H}|$
- start using Z as shorthand for ($i_{1}, i_{2}, i_{3}, b_{1}, b_{2}, b_{3}$)
- another way to write "a' s.a." is:
- exists $p_{0}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ of degree $\leq 2(3 m+3)|H|$
- $p_{0}(Z)=p_{a^{\prime}}(Z) \quad \forall Z \in\left(F_{q}\right)^{3 m+3}$
- $p_{0}(Z)=0 \quad \forall Z \in H^{3 m+3}$

$N P \subset P C P[\log n$, polylog $n]$

- Focus on " $p_{0}(Z)=0 \forall Z \in H^{3 m+3 "}$
- given: $p_{0}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$
-define: $p_{1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right)=$

$$
\Sigma_{h_{j} \in H} p_{0}\left(h_{j}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right) x_{1}{ }^{j}
$$

- Claim:
$\mathrm{p}_{0}(\mathrm{Z})=0 \forall \mathrm{Z} \in \mathrm{H}^{3 \mathrm{~m}+3} \Leftrightarrow \mathrm{p}_{1}(\mathrm{Z})=0 \quad \forall \mathrm{Z} \in \mathrm{F}_{\mathrm{q}} \mathrm{xH}^{3 \mathrm{~m}+3-1}$
- Proof (\Rightarrow) for each $x_{2}, x_{3}, \ldots, x_{3 m+3} \in H^{3 m+3-1}$,
resulting univariate poly in x_{1} has all 0 coeffs.
May 25, 2004

$\mathbf{N P} \subset \mathbf{P C P}[\log \mathbf{n}$, polylog n$]$

- Focus on " $p_{0}(Z)=0 \forall Z \in H^{3 m+3}$ "
- given: $p_{0}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ $\operatorname{deg}\left(\mathrm{P}_{0}\right)+|\mathrm{H}|$
-define: $p_{1}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right)=$

$$
\Sigma_{h_{\mathrm{j}} \in H} H p_{0}\left(h_{j}, x_{2}, x_{3}, \ldots, x_{3 m+3}\right) x_{1}{ }^{j}
$$

- Claim:
$p_{0}(Z)=0 \forall Z \in H^{3 m+3} \Leftrightarrow p_{1}(Z)=0 \forall Z \in F_{\mathrm{q}} \times H^{3 m+3-1}$
$-\operatorname{Proof}(\Leftarrow)$ for each $\mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{3 \mathrm{~m}+3} \in \mathrm{H}^{3 \mathrm{~m}+3-1}$, univariate poly in x_{1} is $\equiv 0 \Rightarrow$ has all 0 coeffs.
- Proof: same.

$N P \subset P C P[\log n$, polylog $n]$

$$
\begin{aligned}
& \text { - given: } p_{1}:\left(F_{q}\right)^{3 m+3} \rightarrow F_{q} \\
& \text { - define: } p_{2}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3} m+3\right)=\begin{array}{c}
\operatorname{deg}\left(p_{2}\right) \leq \\
\operatorname{deg}\left(p_{1}\right)+|H|
\end{array} \\
& \quad \Sigma_{h_{j} \in H} p_{2}\left(x_{1}, h_{j}, x_{3}, x_{4}, \ldots, x_{3 m+3}\right) x_{2}^{j} \\
& \text { - Claim: } \\
& \quad p_{1}(Z)=0 \forall Z \in F_{q} \times H^{3 m+3-1} \\
& \Leftrightarrow \\
& \quad p_{2}(Z)=0 \forall Z \in\left(F_{q}\right)^{2} \times H^{3 m+3-2}
\end{aligned}
$$

May 25, 2004

$N P \subset P C P[\log n$, polylog $n]$

- given: $p_{i-1}:\left(\mathrm{F}_{\mathrm{q}}\right)^{3 \mathrm{~m}+3} \rightarrow \mathrm{~F}_{\mathrm{q}}$
$\operatorname{deg}\left(p_{i}\right) \leq$
$\operatorname{deg}\left(\mathrm{p}_{\mathrm{i}-1}\right)+|\mathrm{H}|$
-define: $p_{i}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{3 n+3}\right)=$
$\Sigma_{h_{i} \in H} p_{2}\left(x_{1}, x_{2}, \ldots, x_{i-1}, h_{j}, x_{i+1}, x_{i+2}, \ldots, x_{3 m+3}\right) x_{j}^{j}$
- Claim:

$$
\begin{aligned}
\mathrm{p}_{\mathrm{i}-1}(\mathrm{Z})=0 \forall \mathrm{Z} & \in\left(\mathrm{~F}_{\mathrm{q}}\right)^{\mathrm{i}-1} \times \mathrm{H}^{3 m+3-(\mathrm{i}-1)} \\
& \Leftrightarrow \\
\mathrm{p}_{\mathrm{i}}(\mathrm{Z})=0 \forall \mathrm{Z} & \in\left(\mathrm{~F}_{\mathrm{q}}\right)^{\mathrm{i}} \times \mathrm{H}^{3 m+3-\mathrm{i}}
\end{aligned}
$$

- Proof: same.

May 25, 2004

$\mathbf{N P} \subset \mathbf{P C P}[\log \mathrm{n}$, polylog n$]$

- Recall: MAX-k-PCS gap problem:
- given:
- variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ taking values from field F_{q}
- $\mathrm{n}=\mathrm{q}^{\mathrm{m}}$ for some integer m
- k-ary constraints $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{1}$
- assignment viewed as $f:\left(F_{q}\right)^{m} \rightarrow F_{q}$
- YES: some degree d assignment satisfies all constraints
- NO: no degree d assignment satisfies more than $(1-\varepsilon)$ fraction of constraints

NP \subset PCP[log n, polylog $n]$

- Instance of MAX-k-PCS gap problem:
- set d = $10 \mathrm{~m}|\mathrm{H}|$
- given assignment $Q: F_{\mathrm{q}} \times\left(F_{\mathrm{q}}\right)^{3 m+3} \rightarrow F_{\mathrm{q}}$
- expect it to be formed in the way we have described from an assignment $\mathrm{a}: \mathrm{H}^{\mathrm{m}} \rightarrow\{0,1\}$ to φ
- constraints: $\forall Z \in\left(F_{q}\right)^{3 m+3}$

$$
\begin{aligned}
& \left(C_{0, Z}\right): \quad p_{0}(Z)=p_{a^{\prime}}(Z) \\
& 0<i \leq 3 m+2\left(C_{i, 2}\right): \quad p_{i}\left(z_{1}, z_{2}, \ldots, z_{i}, z_{i+1}, \ldots, z_{3 m+3}\right)= \\
& \Sigma_{n_{j} \in H} p_{i-1}\left(z_{1}, z_{2}, \ldots, z_{i-1}, h_{j}, z_{i+1}, \ldots, z_{k}\right) z_{i}^{j}
\end{aligned}
$$

NP $\subset \mathbf{P C P}[\log \mathrm{n}$, polylog n$]$

- given $Q: F_{q} \times\left(F_{q}\right)^{3 m+3} \rightarrow F_{q}$ of degree $d=10 m|H|$
- constraints: $\forall Z \in\left(F_{q}\right)^{3 m+3} \quad$ Key: all low

$\left(C_{0, z}\right):$	$p_{0}(Z)=p_{a^{\prime}}(Z) /$ degree polys
$\left(C_{i, z}\right):$	$p_{i}\left(z_{1}, z_{2}, \ldots, z_{i}, z_{i+1}, \ldots, z_{3 m+3}\right)=$
	$\Sigma_{n_{j} \in H} p_{i-1}\left(z_{1}, z_{2}, \ldots, z_{i-1}, h_{j}, z_{i+1}, \ldots, z_{k}\right) z_{i}^{j}$
$\left(C_{3 m+3}, z\right):$	$p_{3 m+3}(Z)=0$

- Schwartz-Zippel: if any one of these sets of constraints is violated at all then at least a $(1 \mathbf{- 1 2 m}|\mathrm{H}| / \mathrm{q})$ fraction in the set are violated

$N P \subset P C P[l o g n$, polylog $n]$

- Proof of Lemma (summary):
- reducing 3-SAT to MAX-k-PCS gap problem
- $\varphi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right)$ instance of 3-SAT
- set $m=O(\log n / \log \log n)$
$-H \subset F_{q}$ such that $|H|^{m}=n \quad\left(|H|=\right.$ polylog $\left.n, q \approx|H|^{3}\right)$
- generate $\left|\mathrm{F}_{\mathrm{q}}\right|^{3 m+3}=$ poly (n) constraints:
$C_{Z}=\Lambda_{i=0 \ldots 3 m+3+1} C_{i, z}$
- each refers to assignment poly. Q and φ (via $p_{\mathrm{a}^{\prime}}$)
- all polys degree $\mathrm{d}=\mathrm{O}(\mathrm{m}|\mathrm{H}|)=$ polylog n
- either all are satisfied or at most $\mathrm{d} / \mathrm{q}=0(1) \ll \varepsilon$

$N P \subset P C P[l o g n$, polylog $n]$

- log n random bits to pick a constraint
- query assignment in polylog(n) locations to determine if constraint is satisfied
- completeness 1
- soundness (1-غ) if prover keeps promise to supply degree d polynomial
- prover can cheat by not supplying proof in expected form

May 25, 2004
CS151 Lecture 16
44

