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Outline

• IP = PSPACE

• Arthur-Merlin games
– classes MA, AM

• Optimization, Approximation, and 
Probabilistically Checkable Proofs
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Shamir’s Theorem

Theorem: IP = PSPACE
– Note: IP ⊂ PSPACE

• enumerate all possible interactions, explicitly 
calculate acceptance probability

• interaction extremely powerful !
• An implication: you can interact with master 

player of Generalized Geography and determine 
if she can win from the current configuration 
even if you do not have the power to compute 
optimal moves!
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Shamir’s Theorem

• need to prove PSPACE ⊂ IP
– use same protocol as for coNP
– some modifications needed 
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Shamir’s Theorem

• protocol for QSAT
– arithmetization step produces arithmetic 

expression p � :
• (� xi) � → � xi = 0, 1 p �
• (� xi) � → � xi = 0, 1 p �

– start with QSAT formula in special form 
(“simple”)
• no occurrence of xi separated by more than 

one “�” from point of quantification
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Shamir’s Theorem

– quantified Boolean expression � is true if and 
only if p � > 0

– Problem: � ’s may cause p � > 22| � |

– Solution: evaluate mod  2n ≤ q ≤ 23n

– prover sends “good” q in first round 
• “good” q is one for which p � mod q > 0

– Claim: good q exists 
• # primes in range is at least 2n
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The QSAT protocol
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Analysis of the QSAT protocol

• Completeness: 
– if � ∈ QSAT then honest prover on previous 

slide will always cause verifier to accept
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Analysis of the QSAT protocol

• Soundness: 
– let pi(x) be the correct polynomials
– let pi*(x) be the polynomials sent by (cheating) prover
– � ∉ QSAT � 0 = p1(0) +/x p1(1) � k
– either p1*(0) +/x p1*(1) � k (and V rejects)
– or p1* � p1 � Prz1

[p1*(z1) = p1(z1)] ≤ 2|� |/2n

– assume (pi+1(0) +/x pi+1(1)=) pi(zi) � pi*(zi) 
– either pi+1*(0) +/x pi+1*(1) � pi*(zi) (and V rejects)
– or pi+1* � pi+1 � Przi+1

[pi+1*(zi+1) = pi+1(zi+1)] ≤ 2|� |/2n

� �*�+*�� 
,�-
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Analysis of protocol

• Soundness (continued):
– if verifier does not reject, there must be some 

i for which:

pi* � pi and yet pi*(zi) = pi(zi)

– for each i, probability is ≤ 2| � |/2n

– union bound: probability that there exists an i 
for which the bad event occurs is 

≤ 2n| � |/2n ≤ poly(n)/2n << 1/3

• Conclude: QSAT is in IP
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Example 

• Papadimitriou – pp. 475-480

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) + 
� w=0,1(z + y(1-w))]]

(p � = 96 but V doesn’t know that yet !)
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Example

p � = � x=0,1� y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) + � w=0,1(z + y(1-w))]]

Round 1: (prover claims p � > 0) 

– prover sends q = 13; claims p � = 96 mod 13 = 
5; sends k = 5

– prover removes outermost “ � ”; sends 

p1(x) = 2x2 + 8x + 6 

– verifier checks: 

p1(0)p1(1) = (6)(16) = 96 ≡ 5 (mod 13)
– verifier picks randomly: z1 = 9  
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Example

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) + 
� w=0,1(z + y(1-w))]]

p � [x←9] = � y=0,1[(9 + y) * � z=0,1[(9z + y(1-z)) + 
� w=0,1(z + y(1-w))]]
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Example

p1(9) = � y=0,1[(9 + y) * � z=0,1[(9z + y(1-z)) + � w=0,1(z + y(1-w))]]

Round 2: (prover claims this = 6) 

– prover removes outermost “ � ”; sends
p2(y) = 2y3 + y2 + 3y 

– verifier checks:

p2(0) + p2(1) = 0 + 6 = 6 ≡ 6 (mod 13)
– verifier picks randomly: z2 = 3  
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Example

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) + 
� w=0,1(z + y(1-w))]]

p � [x←9, y←3] = [(9 + 3) * � z=0,1[(9z + 3(1-z)) + 
� w=0,1(z + 3(1-w))]]
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Example

p2(3) = [(9 + 3) * � z=0,1[(9z + 3(1-z)) + � w=0,1(z + 3(1-w))]]

Round 3: (prover claims this = 7) 

– everyone agrees expression = 12*(…) 

– prover removes outermost “ � ”; sends 
p3(z) = 8z + 6 

– verifier checks: 

p3(0) * p3(1) = (6)(14) = 84; 12*84 ≡ 7 (mod 13)
– verifier picks randomly: z3 = 7  
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Example

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) + 
� w=0,1(z + y(1-w))]]

p � [x←9, y←3, z←7] = 12 * [(9*7 + 3(1-7)) + 
� w=0,1(7 + 3(1-w))]

May 18, 2004 CS151 Lecture 15 18

Example

12*p3(7) = 12 * [(9*7 + 3(1-7)) + � w=0,1(7 + 3(1-w))]
Round 4: (prover claims = 12*10) 

– everyone agrees expression = 12*[6+(…)] 
– prover removes outermost “ � ”; sends 

p4(w) = 10w + 10 
– verifier checks: 
p4(0)+p4(1) = 10 + 20 = 30; 12*[6+30] ≡ 12*10 (mod 13)
– verifier picks randomly: z4 = 2
– Final check:  
12*[(9*7+3(1-7))+(7+3(1-2))] = 12*[6+p4(2)] = 12*[6+30] 
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Arthur-Merlin Games

• IP permits verifier to keep coin-flips private
– necessary feature?
– GNI protocol breaks without it

• Arthur-Merlin game: interactive protocol in 
which coin-flips are public
– Arthur (verifier) may as well just send results 

of coin-flips and ask Merlin (prover) to perform 
any computation he would have done
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Arthur-Merlin Games

• Clearly Arthur-Merlin ⊂ IP
– “private coins are at least as powerful as 

public coins”

• Proof that IP = PSPACE actually shows
PSPACE ⊂ Arthur-Merlin ⊂ IP ⊂ PSPACE 

– “public coins are at least as powerful as 
private coins” !
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Arthur-Merlin Games

• Delimiting # of rounds:
– AM[k] = Arthur-Merlin game with k rounds, 

Arthur (verifier) goes first
– MA[k] = Arthur-Merlin game with k rounds, 

Merlin (prover) goes first

Theorem: AM[k] (MA[k]) equals AM[k]
(MA[k]) with perfect completeness.
– i.e., x ∈ L implies accept with probability 1
– we will not prove
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Arthur-Merlin Games

Theorem: for all constant k ≥ 2
AM[k] = AM[2].

• Proof:
– we show MA[2] ⊂ AM[2]
– implies can move all of Arthur’s messages to 

beginning of interaction:

AMAMAM…AM = AAMMAM…AM
… = AAA…AMMM…M
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Arthur-Merlin Games

• Proof (continued):
– given L ∈ MA[2]

x ∈ L � �m Prr[(x, m, r) ∈ R] = 1
�Prr[�m (x, m, r) ∈ R] = 1

x ∉ L � �m Prr[(x, m, r) ∈ R] ≤ �
�Prr[�m (x, m, r) ∈ R] ≤ 2|m| �

– by repeating t times with independent random 
strings r, can make error � < 2-t

– set t = m+1 to get 2|m| � < ½. 

�����������*��
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MA and AM

• Two important classes:
– MA = MA[2]
– AM = AM[2]

• definitions without reference to interaction:
– L ∈ MA iff � poly-time language R

x ∈ L � �m Prr[(x, m, r) ∈ R] = 1
x ∉ L � �m Prr[(x, m, r) ∈ R] ≤ ½

– L ∈ AM iff � poly-time language R
x ∈ L � Prr[�m (x, m, r) ∈ R] = 1
x ∉ L � Prr[�m (x, m, r) ∈ R] ≤ ½
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MA and AM

L ∈ AM iff � poly-time language R
x ∈ L � Prr[�m (x, m, r) ∈ R] = 1
x ∉ L � Prr[�m (x, m, r) ∈ R] ≤ ½

• Relation to other complexity classes:
– both contain NP (can elect to not use randomness)
– both contained in �2. L ∈ �2 iff � R ∈ P for which:

x ∈ L � Prr[�m (x, m, r) ∈ R] = 1
x ∉ L � Prr[�m (x, m, r) ∈ R] < 1

– so clear that AM ⊂ �2

– know that MA ⊂ AM

May 18, 2004 CS151 Lecture 15 26

MA and AM
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MA and AM

• We know Arthur-Merlin = IP.
– “public coins = private coins”

Theorem (GS): IP[k] ⊂ AM[O(k)]
– stronger result

– implies for all constant k ≥ 2,
IP[k] = AM[O(k)] = AM[2]

• So, GNI ∈ IP[2] = AM

May 18, 2004 CS151 Lecture 15 28

MA and AM

Theorem: coNP ⊂ AM � PH = AM.
• Proof:

– suffices to show �2 ⊂ AM  (and use AM ⊂ �2)
– L ∈ �2 iff � poly-time language R

x ∈ L � �y �z (x, y, z) ∈ R
x ∉ L � �y �z (x, y, z) ∉ R

– Merlin sends y
– 1 AM exchange decides coNP query: �z (x, y, z)∈R ?

– 3 rounds; in AM
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Back to Graph Isomorphism

• The payoff:
– not known if GI is NP-complete.

– previous Theorems: 

if GI is NP-complete then PH = AM
– unlikely! 

– Proof: GI NP-complete � GNI coNP-
complete  � coNP ⊂ AM � PH = AM
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New topic(s)

Optimization problems, 
Approximation Algorithms, 

and 
Probabilistically Checkable Proofs
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Optimization Problems

• many hard problems (especially NP-hard) 
are optimization problems
– e.g. find shortest TSP tour

– e.g. find smallest vertex cover
– e.g. find largest clique

– may be minimization or maximization problem
– “opt” = value of optimal solution
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Approximation Algorithms

• often happy with approximately optimal
solution
– warning: lots of heuristics

– we want approximation algorithm with 
guaranteed approximation ratio of r

– meaning: on every input x, output is 
guaranteed to have value 

at most r*opt for minimization

at least opt/r for maximization
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Approximation Algorithms

• Example approximation algorithm:
– Recall:

Vertex Cover (VC): given a graph G, what is the 
smallest subset of vertices that touch every 
edge?

– NP-complete 
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Approximation Algorithms

• Approximation algorithm for VC:
– pick an edge (x, y), add vertices x and y to VC

– discard edges incident to x or y; repeat.

• Claim: approximation ratio is 2.

• Proof: 
– an optimal VC must include at least one 

endpoint of each edge considered 

– therefore 2*opt ≥ actual
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Approximation Algorithms

• diverse array of ratios achievable
• some examples:

– (min) Vertex Cover: 2 
– MAX-3-SAT (find assignment satisfying 

largest # clauses): 8/7
– (min) Set Cover: ln n

– (max) Clique: n/log2n

– (max) Knapsack: (1 + � ) for any � > 0 
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Approximation Algorithms

(max) Knapsack: (1 + � ) for any � > 0 

• called Polynomial Time Approximation 
Scheme (PTAS)
– algorithm runs in poly time for every fixed � >0

– poor dependence on � allowed

• If all NP optimization problems had a 
PTAS, almost like P = NP (!)
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Approximation Algorithms

• A job for complexity: How to explain failure 
to do better than ratios on previous slide?
– just like: how to explain failure to find poly-

time algorithm for SAT...

– first guess: probably NP-hard

– what is needed to show this?

• “gap-producing” reduction from NP-
complete problem L1 to L2
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Approximation Algorithms

• “gap-producing” reduction from NP-
complete problem L1 to L2
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