
1

CS151
Complexity Theory

Lecture 15
May 18, 2004

May 18, 2004 CS151 Lecture 15 2

Outline

• IP = PSPACE

• Arthur-Merlin games
– classes MA, AM

• Optimization, Approximation, and
Probabilistically Checkable Proofs

May 18, 2004 CS151 Lecture 15 3

Shamir’s Theorem

Theorem: IP = PSPACE
– Note: IP ⊂ PSPACE

• enumerate all possible interactions, explicitly
calculate acceptance probability

• interaction extremely powerful !
• An implication: you can interact with master

player of Generalized Geography and determine
if she can win from the current configuration
even if you do not have the power to compute
optimal moves!

May 18, 2004 CS151 Lecture 15 4

Shamir’s Theorem

• need to prove PSPACE ⊂ IP
– use same protocol as for coNP
– some modifications needed

May 18, 2004 CS151 Lecture 15 5

Shamir’s Theorem

• protocol for QSAT
– arithmetization step produces arithmetic

expression p � :
• (� xi) � → � xi = 0, 1 p �
• (� xi) � → � xi = 0, 1 p �

– start with QSAT formula in special form
(“simple”)
• no occurrence of xi separated by more than

one “�” from point of quantification

May 18, 2004 CS151 Lecture 15 6

Shamir’s Theorem

– quantified Boolean expression � is true if and
only if p � > 0

– Problem: � ’s may cause p � > 22| � |

– Solution: evaluate mod 2n ≤ q ≤ 23n

– prover sends “good” q in first round
• “good” q is one for which p � mod q > 0

– Claim: good q exists
• # primes in range is at least 2n

2

May 18, 2004 CS151 Lecture 15 7

The QSAT protocol
������ ��������

�	
����

�����
�������������

����
����������

������	��� ��� �	���

�������� ���������� ���! ���� �
�

�"��"�
����
��

#������� ���������� ���! ���� �

�$��←��%
#���

�#

#����
#����
�����������������������

#���
#������
�������

������	��� ��# �	���
&������� ���������� ���! ���� �

�$��←��"��#←�#%

&���

	���

	����
	����
	'���	'������

	���
	������
	'���	'���

������	��� ��	 �	���

	��	����
�$��←��"("��	←�	%

)�
)�

May 18, 2004 CS151 Lecture 15 8

Analysis of the QSAT protocol

• Completeness:
– if � ∈ QSAT then honest prover on previous

slide will always cause verifier to accept

May 18, 2004 CS151 Lecture 15 9

Analysis of the QSAT protocol

• Soundness:
– let pi(x) be the correct polynomials
– let pi*(x) be the polynomials sent by (cheating) prover
– � ∉ QSAT � 0 = p1(0) +/x p1(1) � k
– either p1*(0) +/x p1*(1) � k (and V rejects)
– or p1* � p1 � Prz1

[p1*(z1) = p1(z1)] ≤ 2|� |/2n

– assume (pi+1(0) +/x pi+1(1)=) pi(zi) � pi*(zi)
– either pi+1*(0) +/x pi+1*(1) � pi*(zi) (and V rejects)
– or pi+1* � pi+1 � Przi+1

[pi+1*(zi+1) = pi+1(zi+1)] ≤ 2|� |/2n

� �*�+*��
,�-

May 18, 2004 CS151 Lecture 15 10

Analysis of protocol

• Soundness (continued):
– if verifier does not reject, there must be some

i for which:

pi* � pi and yet pi*(zi) = pi(zi)

– for each i, probability is ≤ 2| � |/2n

– union bound: probability that there exists an i
for which the bad event occurs is

≤ 2n| � |/2n ≤ poly(n)/2n << 1/3

• Conclude: QSAT is in IP

May 18, 2004 CS151 Lecture 15 11

Example

• Papadimitriou – pp. 475-480

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) +
� w=0,1(z + y(1-w))]]

(p � = 96 but V doesn’t know that yet !)

May 18, 2004 CS151 Lecture 15 12

Example

p � = � x=0,1� y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) + � w=0,1(z + y(1-w))]]

Round 1: (prover claims p � > 0)

– prover sends q = 13; claims p � = 96 mod 13 =
5; sends k = 5

– prover removes outermost “ � ”; sends

p1(x) = 2x2 + 8x + 6

– verifier checks:

p1(0)p1(1) = (6)(16) = 96 ≡ 5 (mod 13)
– verifier picks randomly: z1 = 9

3

May 18, 2004 CS151 Lecture 15 13

Example

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) +
� w=0,1(z + y(1-w))]]

p � [x←9] = � y=0,1[(9 + y) * � z=0,1[(9z + y(1-z)) +
� w=0,1(z + y(1-w))]]

May 18, 2004 CS151 Lecture 15 14

Example

p1(9) = � y=0,1[(9 + y) * � z=0,1[(9z + y(1-z)) + � w=0,1(z + y(1-w))]]

Round 2: (prover claims this = 6)

– prover removes outermost “ � ”; sends
p2(y) = 2y3 + y2 + 3y

– verifier checks:

p2(0) + p2(1) = 0 + 6 = 6 ≡ 6 (mod 13)
– verifier picks randomly: z2 = 3

May 18, 2004 CS151 Lecture 15 15

Example

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) +
� w=0,1(z + y(1-w))]]

p � [x←9, y←3] = [(9 + 3) * � z=0,1[(9z + 3(1-z)) +
� w=0,1(z + 3(1-w))]]

May 18, 2004 CS151 Lecture 15 16

Example

p2(3) = [(9 + 3) * � z=0,1[(9z + 3(1-z)) + � w=0,1(z + 3(1-w))]]

Round 3: (prover claims this = 7)

– everyone agrees expression = 12*(…)

– prover removes outermost “ � ”; sends
p3(z) = 8z + 6

– verifier checks:

p3(0) * p3(1) = (6)(14) = 84; 12*84 ≡ 7 (mod 13)
– verifier picks randomly: z3 = 7

May 18, 2004 CS151 Lecture 15 17

Example

� = �x�y(x∨y)∧�z((x∧z)∨(y∧¬z))∨�w(z∨(y∧¬w))

p � = � x=0,1 � y=0,1[(x + y) * � z=0,1[(xz + y(1-z)) +
� w=0,1(z + y(1-w))]]

p � [x←9, y←3, z←7] = 12 * [(9*7 + 3(1-7)) +
� w=0,1(7 + 3(1-w))]

May 18, 2004 CS151 Lecture 15 18

Example

12*p3(7) = 12 * [(9*7 + 3(1-7)) + � w=0,1(7 + 3(1-w))]
Round 4: (prover claims = 12*10)

– everyone agrees expression = 12*[6+(…)]
– prover removes outermost “ � ”; sends

p4(w) = 10w + 10
– verifier checks:
p4(0)+p4(1) = 10 + 20 = 30; 12*[6+30] ≡ 12*10 (mod 13)
– verifier picks randomly: z4 = 2
– Final check:
12*[(9*7+3(1-7))+(7+3(1-2))] = 12*[6+p4(2)] = 12*[6+30]

4

May 18, 2004 CS151 Lecture 15 19

Arthur-Merlin Games

• IP permits verifier to keep coin-flips private
– necessary feature?
– GNI protocol breaks without it

• Arthur-Merlin game: interactive protocol in
which coin-flips are public
– Arthur (verifier) may as well just send results

of coin-flips and ask Merlin (prover) to perform
any computation he would have done

May 18, 2004 CS151 Lecture 15 20

Arthur-Merlin Games

• Clearly Arthur-Merlin ⊂ IP
– “private coins are at least as powerful as

public coins”

• Proof that IP = PSPACE actually shows
PSPACE ⊂ Arthur-Merlin ⊂ IP ⊂ PSPACE

– “public coins are at least as powerful as
private coins” !

May 18, 2004 CS151 Lecture 15 21

Arthur-Merlin Games

• Delimiting # of rounds:
– AM[k] = Arthur-Merlin game with k rounds,

Arthur (verifier) goes first
– MA[k] = Arthur-Merlin game with k rounds,

Merlin (prover) goes first

Theorem: AM[k] (MA[k]) equals AM[k]
(MA[k]) with perfect completeness.
– i.e., x ∈ L implies accept with probability 1
– we will not prove

May 18, 2004 CS151 Lecture 15 22

Arthur-Merlin Games

Theorem: for all constant k ≥ 2
AM[k] = AM[2].

• Proof:
– we show MA[2] ⊂ AM[2]
– implies can move all of Arthur’s messages to

beginning of interaction:

AMAMAM…AM = AAMMAM…AM
… = AAA…AMMM…M

May 18, 2004 CS151 Lecture 15 23

Arthur-Merlin Games

• Proof (continued):
– given L ∈ MA[2]

x ∈ L � �m Prr[(x, m, r) ∈ R] = 1
�Prr[�m (x, m, r) ∈ R] = 1

x ∉ L � �m Prr[(x, m, r) ∈ R] ≤ �
�Prr[�m (x, m, r) ∈ R] ≤ 2|m| �

– by repeating t times with independent random
strings r, can make error � < 2-t

– set t = m+1 to get 2|m| � < ½.

�����������*��

May 18, 2004 CS151 Lecture 15 24

MA and AM

• Two important classes:
– MA = MA[2]
– AM = AM[2]

• definitions without reference to interaction:
– L ∈ MA iff � poly-time language R

x ∈ L � �m Prr[(x, m, r) ∈ R] = 1
x ∉ L � �m Prr[(x, m, r) ∈ R] ≤ ½

– L ∈ AM iff � poly-time language R
x ∈ L � Prr[�m (x, m, r) ∈ R] = 1
x ∉ L � Prr[�m (x, m, r) ∈ R] ≤ ½

5

May 18, 2004 CS151 Lecture 15 25

MA and AM

L ∈ AM iff � poly-time language R
x ∈ L � Prr[�m (x, m, r) ∈ R] = 1
x ∉ L � Prr[�m (x, m, r) ∈ R] ≤ ½

• Relation to other complexity classes:
– both contain NP (can elect to not use randomness)
– both contained in �2. L ∈ �2 iff � R ∈ P for which:

x ∈ L � Prr[�m (x, m, r) ∈ R] = 1
x ∉ L � Prr[�m (x, m, r) ∈ R] < 1

– so clear that AM ⊂ �2

– know that MA ⊂ AM

May 18, 2004 CS151 Lecture 15 26

MA and AM

�

� � ��� �

����

� 	 ��� 	

	 � ��	 �

May 18, 2004 CS151 Lecture 15 27

MA and AM

• We know Arthur-Merlin = IP.
– “public coins = private coins”

Theorem (GS): IP[k] ⊂ AM[O(k)]
– stronger result

– implies for all constant k ≥ 2,
IP[k] = AM[O(k)] = AM[2]

• So, GNI ∈ IP[2] = AM

May 18, 2004 CS151 Lecture 15 28

MA and AM

Theorem: coNP ⊂ AM � PH = AM.
• Proof:

– suffices to show �2 ⊂ AM (and use AM ⊂ �2)
– L ∈ �2 iff � poly-time language R

x ∈ L � �y �z (x, y, z) ∈ R
x ∉ L � �y �z (x, y, z) ∉ R

– Merlin sends y
– 1 AM exchange decides coNP query: �z (x, y, z)∈R ?

– 3 rounds; in AM

May 18, 2004 CS151 Lecture 15 29

Back to Graph Isomorphism

• The payoff:
– not known if GI is NP-complete.

– previous Theorems:

if GI is NP-complete then PH = AM
– unlikely!

– Proof: GI NP-complete � GNI coNP-
complete � coNP ⊂ AM � PH = AM

May 18, 2004 CS151 Lecture 15 30

New topic(s)

Optimization problems,
Approximation Algorithms,

and
Probabilistically Checkable Proofs

6

May 18, 2004 CS151 Lecture 15 31

Optimization Problems

• many hard problems (especially NP-hard)
are optimization problems
– e.g. find shortest TSP tour

– e.g. find smallest vertex cover
– e.g. find largest clique

– may be minimization or maximization problem
– “opt” = value of optimal solution

May 18, 2004 CS151 Lecture 15 32

Approximation Algorithms

• often happy with approximately optimal
solution
– warning: lots of heuristics

– we want approximation algorithm with
guaranteed approximation ratio of r

– meaning: on every input x, output is
guaranteed to have value

at most r*opt for minimization

at least opt/r for maximization

May 18, 2004 CS151 Lecture 15 33

Approximation Algorithms

• Example approximation algorithm:
– Recall:

Vertex Cover (VC): given a graph G, what is the
smallest subset of vertices that touch every
edge?

– NP-complete

May 18, 2004 CS151 Lecture 15 34

Approximation Algorithms

• Approximation algorithm for VC:
– pick an edge (x, y), add vertices x and y to VC

– discard edges incident to x or y; repeat.

• Claim: approximation ratio is 2.

• Proof:
– an optimal VC must include at least one

endpoint of each edge considered

– therefore 2*opt ≥ actual

May 18, 2004 CS151 Lecture 15 35

Approximation Algorithms

• diverse array of ratios achievable
• some examples:

– (min) Vertex Cover: 2
– MAX-3-SAT (find assignment satisfying

largest # clauses): 8/7
– (min) Set Cover: ln n

– (max) Clique: n/log2n

– (max) Knapsack: (1 + �) for any � > 0

May 18, 2004 CS151 Lecture 15 36

Approximation Algorithms

(max) Knapsack: (1 + �) for any � > 0

• called Polynomial Time Approximation
Scheme (PTAS)
– algorithm runs in poly time for every fixed � >0

– poor dependence on � allowed

• If all NP optimization problems had a
PTAS, almost like P = NP (!)

7

May 18, 2004 CS151 Lecture 15 37

Approximation Algorithms

• A job for complexity: How to explain failure
to do better than ratios on previous slide?
– just like: how to explain failure to find poly-

time algorithm for SAT...

– first guess: probably NP-hard

– what is needed to show this?

• “gap-producing” reduction from NP-
complete problem L1 to L2

May 18, 2004 CS151 Lecture 15 38

Approximation Algorithms

• “gap-producing” reduction from NP-
complete problem L1 to L2

	�

.�*

/�

/#��� �)�
��0,�� �

� �
�
�

��

