

CS151

Lecture 15

The QSAT protocol		
input: φ		
Prover k a n (x)	Verifier	
$(x, q, p_1(x))$ $p_1(x)$: remove outer Σ or \prod from p_{φ}	$p_1(0)+p_1(1) = k?$ or $p_1(0)p_1(1) = k?$	
$p_2(x)$: remove outer Σ or \prod from	pick random z1 in Fa	
$p_{\varphi}[x_1 \leftarrow z_1]$ $p_2(x)$	$p_2(0)+p_2(1)=p_1(z_1)?$ or Z_2 $p_2(0)p_2(1) = p_1(z_1)?$	
p₃(x): remove outer Σ or ∏ from	pick random z2 in Fg	
$p_{\varphi}[x_1 \leftarrow z_1, x_2 \leftarrow z_2]$ $p_2(x)$		
1.50 .	p _n (0)+p _n (1)=p _{n-1} (z _{n-1})? or	
p _n (x)	$p_n(0)p_n(1) = p_{n-1}(z_{n-1})$?	
	$p_n(z_n) = p_{\varphi}[x_1 \leftarrow z_1, \dots, x_n \leftarrow z_n]$	
May 18, 2004 CS151 Lecture	9 15 7	

Example		
$\phi = \forall x \exists y (x \lor y)$	$y) \land \forall z((x \land z) \lor (y \land \neg z)) \lor \exists w(z \lor (y \land \neg w)) \lor z(y \land \neg w)$	/))
$p_{\varphi} = \prod_{x=0,1} \Sigma$	$\begin{split} & \Sigma_{y=0,1}[(x + y) * \prod_{z=0,1}[(xz + y(1-z)) + \\ & \Sigma_{w=0,1}(z + y(1-w))]] \end{split}$	F
$p_{\varphi}[x \leftarrow 9] = \Sigma$	$\begin{split} & \Sigma_{y=0,1}[(9+y)*\prod_{z=0,1}[(9z+y(1\text{-}z))-\Sigma_{w=0,1}(z+y(1\text{-}w))]] \end{split}$	ł
May 18, 2004	CS151 Lecture 15	13

