CS151

 Complexity Theory
Lecture 15

May 18, 2004

Outline

- IP = PSPACE
- Arthur-Merlin games
- classes MA, AM
- Optimization, Approximation, and Probabilistically Checkable Proofs

May 18, 2004
CS151 Lecture 15

Shamir's Theorem

Theorem: IP = PSPACE

- Note: IP \subset PSPACE
- enumerate all possible interactions, explicitly calculate acceptance probability
- interaction extremely powerful!
- An implication: you can interact with master player of Generalized Geography and determine if she can win from the current configuration even if you do not have the power to compute optimal moves!
- need to prove PSPACE \subset IP
- use same protocol as for coNP
- some modifications needed

Shamir's Theorem

Shamir's Theorem

- protocol for QSAT
- arithmetization step produces arithmetic expression p_{φ} :
- $\left(\exists \mathrm{x}_{\mathrm{i}}\right) \varphi \rightarrow \Sigma_{\mathrm{x}_{\mathrm{i}}=0,1} \mathrm{p}_{\varphi}$
- $\left(\forall \mathrm{x}_{\mathrm{i}}\right) \varphi \rightarrow \prod_{\mathrm{x}_{\mathrm{i}}=0,1} \mathrm{p}_{\varphi}$
- start with QSAT formula in special form ("simple")
- no occurrence of x_{i} separated by more than one " \forall " from point of quantification

Shamir's Theorem

- quantified Boolean expression φ is true if and only if $p_{\varphi}>0$
- Problem: Π^{\prime} s may cause $p_{\varphi}>2^{2^{|\varphi|}}$
- Solution: evaluate mod $2^{n} \leq q \leq 2^{3 n}$
- prover sends "good" q in first round
- "good" q is one for which p_{φ} mod $q>0$
- Claim: good q exists
- \# primes in range is at least 2^{n}

Analysis of the QSAT protocol

- Soundness:
- let $p_{i}(x)$ be the correct polynomials
- let $p_{i}{ }^{*}(x)$ be the polynomials sent by (cheating) prover
$-\varphi \notin$ QSAT $\Rightarrow 0=p_{1}(0)+/ x p_{1}(1) \neq k$
- either $p_{1}{ }^{*}(0)+/ x p_{1}{ }^{*}(1) \neq k$ (and V rejects) φ is "simple"
- or $p_{1}{ }^{*} \neq p_{1} \Rightarrow \operatorname{Pr}_{z_{1}}\left[p_{1}{ }^{*}\left(z_{1}\right)=p_{1}\left(z_{1}\right)\right] \leq 2|\varphi| / 2^{n}$
- assume $\left(p_{i+1}(0)+/ x p_{i+1}(1)=\right) p_{i}\left(z_{i}\right) \neq p_{i}^{*}\left(z_{i}\right)$
- either $p_{i+1}{ }^{*}(0)+/ x p_{i+1}{ }^{*}(1) \neq p_{i}^{*}\left(z_{i}\right)$ (and V rejects)
- or $\mathrm{p}_{\mathrm{i}+1}{ }^{*} \neq \mathrm{p}_{\mathrm{i}+1} \Rightarrow \operatorname{Pr}_{\mathrm{z}_{\mathrm{i}+1}}\left[\mathrm{p}_{\mathrm{i}+1}{ }^{*}\left(\mathrm{z}_{\mathrm{i}+1}\right)=\mathrm{p}_{\mathrm{i}+1}\left(\mathrm{z}_{\mathrm{i}+1}\right)\right] \leq 2|\varphi| / 2^{n}$

Example

- Papadimitriou - pp. 475-480
$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists w(z \vee(y \wedge \neg w))$
$\mathrm{p}_{\varphi}=\prod_{\mathrm{x}=0,1} \Sigma_{\mathrm{y}=0,1}\left[(\mathrm{x}+\mathrm{y})^{*} \prod_{\mathrm{z}=0,1}[(\mathrm{xz}+\mathrm{y}(1-\mathrm{z}))+\right.$
$\left.\left.\Sigma_{w=0,1}(z+y(1-w))\right]\right]$
($p_{\varphi}=96$ but V doesn't know that yet !)
May 18, 2004
CS151 Lecture 15 11

Example		
- Papadimitriou - pp. 475-480		
$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists \mathrm{w}(\mathrm{z} \vee(\mathrm{y} \wedge \neg \mathrm{w}))$		
$\begin{gathered} \mathrm{p}_{\varphi}=\prod_{\mathrm{x}=0,1} \Sigma_{\mathrm{y}=0,1}\left[(\mathrm{x}+\mathrm{y})^{*} \prod_{\mathrm{z}=0,1}[(\mathrm{xz}+\mathrm{y}(1-\mathrm{z}))+\right. \\ \left.\left.\Sigma_{\mathrm{w}=0,1}(\mathrm{z}+\mathrm{y}(1-\mathrm{w}))\right]\right] \end{gathered}$		
($\mathrm{p}_{\varphi}=96$ but V doesn't know that yet !)		
May 18, 2004	CS151 Leoture 15	11

Analysis of the QSAT protocol

- Completeness:
- if $\varphi \in$ QSAT then honest prover on previous slide will always cause verifier to accept

Analysis of protocol

- Soundness (continued):
- if verifier does not reject, there must be some i for which:

$$
\mathrm{p}_{\mathrm{i}}^{*} \neq \mathrm{p}_{\mathrm{i}} \text { and yet } \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{z}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}\left(\mathrm{z}_{\mathrm{i}}\right)
$$

- for each i, probability is $\leq 2|\varphi| / 2^{n}$
- union bound: probability that there exists an i for which the bad event occurs is

$$
\leq 2 n|\varphi| / 2^{n} \leq \operatorname{poly}(n) / 2^{n} \ll 1 / 3
$$

- Conclude: QSAT is in IP

May 18, 2004
CS151 Lecture 15

Example

$p_{\varphi}=\Pi_{\mathrm{x}=0,1} \Sigma_{\mathrm{y}=0,1}\left[(\mathrm{x}+\mathrm{y}){ }^{*} \Pi_{z=0,1}\left[(\mathrm{xz}+\mathrm{y}(1-\mathrm{z}))+\sum_{\mathrm{w}=0,1}(\mathrm{z}+\mathrm{y}(1-\mathrm{w})) \mathrm{]}\right]\right.$
Round 1: (prover claims $p_{\varphi}>0$)

- prover sends $q=13$; claims $p_{\varphi}=96 \bmod 13=$ 5 ; sends $k=5$
- prover removes outermost " Π "; sends

$$
p_{1}(x)=2 x^{2}+8 x+6
$$

- verifier checks:

$$
\mathrm{p}_{1}(0) \mathrm{p}_{1}(1)=(6)(16)=96 \equiv 5(\bmod 13)
$$

- verifier picks randomly: $z_{1}=9$

May 18,2004
CS151 Lecture 15

Example		
$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists \mathrm{w}(\mathrm{z} \vee(\mathrm{y} \wedge \neg \mathrm{w}))$		
$\mathrm{p}_{\varphi}=\prod_{\mathrm{x}=0,1} \Sigma_{\mathrm{y}=0, \mathrm{I}}\left[\mathrm{I}(\mathrm{x}+\mathrm{y})_{\mathrm{w}=0,1}{ }^{*}(\mathrm{z}+\mathrm{y}(1-\mathrm{y}=0, \mathrm{w}) \mathrm{I}) \mathrm{xz}+\mathrm{y}(1-\mathrm{z})\right)+$		
$\mathrm{p}_{\phi}[\mathrm{x} \leftarrow 9]=\underset{\mathrm{y}=0,0}{ }\left[(9+\mathrm{y})^{*} \prod_{\mathrm{z}=0,0}[(9 \mathrm{z}+\mathrm{y}(1-\mathrm{z}))+\right.$		
May 18, 2004	CS151 Leoture 15	${ }^{13}$

Example

$p_{1}(9)=\Sigma_{\mathrm{y}=0,1}\left[(9+\mathrm{y}) * \prod_{\mathrm{z}=0,1}\left[(9 \mathrm{z}+\mathrm{y}(1-\mathrm{z}))+\sum_{\mathrm{w}=0,1}(\mathrm{z}+\mathrm{y}(1-\mathrm{w}))\right]\right]$
Round 2: (prover claims this $=6$)
-prover removes outermost " Σ "; sends

$$
p_{2}(y)=2 y^{3}+y^{2}+3 y
$$

-verifier checks:

$$
p_{2}(0)+p_{2}(1)=0+6=6 \equiv 6(\bmod 13)
$$

- verifier picks randomly: $z_{2}=3$

Example

$$
\begin{gathered}
\varphi=\forall \mathrm{x} \exists \mathrm{y}(\mathrm{x} \vee \mathrm{y}) \wedge \forall \mathrm{z}((\mathrm{x} \wedge \mathrm{z}) \vee(\mathrm{y} \wedge \neg \mathrm{z})) \vee \exists \mathrm{w}(\mathrm{z} \vee(\mathrm{y} \wedge \neg \mathrm{w})) \\
\mathrm{p}_{\varphi}=\prod_{\mathrm{x}=0,1} \sum_{\mathrm{y}=0,1}\left[(\mathrm{x}+\mathrm{y})^{*} \prod_{\mathrm{z}=0,1}[(\mathrm{xz}+\mathrm{y}(1-\mathrm{z}))+\right. \\
\left.\left.\sum_{\mathrm{w}=0,1}(\mathrm{z}+\mathrm{y}(1-\mathrm{w}))\right]\right] \\
\mathrm{p}_{\varphi}[\mathrm{x} \leftarrow 9, \mathrm{y} \leftarrow 3]=\left[(9+3)^{*} \prod_{\mathrm{z}=0,1}[(9 \mathrm{z}+3(1-\mathrm{z}))+\right. \\
\left.\left.\sum_{\mathrm{w}=0,1}(\mathrm{z}+3(1-\mathrm{w}))\right]\right]
\end{gathered}
$$

Example

$p_{2}(3)=\left[(9+3)^{*} \prod_{z=0,1}\left[(9 z+3(1-z))+\Sigma_{w=0,1}(z+3(1-w))\right]\right]$
Round 3: (prover claims this $=7$)

- everyone agrees expression $=12^{*}(\ldots)$
- prover removes outermost " Π "; sends

$$
p_{3}(z)=8 z+6
$$

- verifier checks:
$\mathrm{p}_{3}(0){ }^{*} \mathrm{p}_{3}(1)=(6)(14)=84 ; 12^{*} 84 \equiv 7(\bmod 13)$
- verifier picks randomly: $z_{3}=7$

May 18, 2004
CS151 Lecture 15
16

Example		
$\varphi=\forall x \exists y(x \vee y) \wedge \forall z((x \wedge z) \vee(y \wedge \neg z)) \vee \exists \mathrm{w}(\mathrm{z} \vee(\mathrm{y} \wedge \neg \mathrm{w}))$		
$\begin{gathered} \mathrm{p}_{\varphi}=\prod_{\mathrm{x}=0,1} \Sigma_{\mathrm{y}=0,1}\left[(\mathrm{x}+\mathrm{y})^{*} \prod_{\mathrm{z}=0,1}[(\mathrm{xz}+\mathrm{y}(1-\mathrm{z}))+\right. \\ \left.\left.\Sigma_{\mathrm{w}=0,1}(\mathrm{z}+\mathrm{y}(1-\mathrm{w}))\right]\right] \end{gathered}$		
$\begin{gathered} \mathrm{p}_{\varphi}[\mathrm{x} \leftarrow 9, \mathrm{y} \leftarrow 3, \mathrm{z} \leftarrow 7]=12^{*}\left[\left(9^{*} 7+3(1-7)\right)+\right. \\ \left.\Sigma_{\mathrm{w}=0,1}(7+3(1-\mathrm{w}))\right] \end{gathered}$		
May 18, 2004	CS151 Lecture 15	17

Example

$12^{*} \mathrm{p}_{3}(7)=12{ }^{*}\left[\left(9^{*} 7+3(1-7)\right)+\Sigma_{\mathrm{w}=0,1}(7+3(1-\mathrm{w}))\right]$
Round 4: (prover claims $=12^{*} 10$)

- everyone agrees expression $=12^{*}[6+(\ldots)]$
- prover removes outermost " Σ "; sends
- verifier checks:
$\mathrm{p}_{4}(0)+\mathrm{p}_{4}(1)=10+20=30 ; 12^{*}[6+30] \equiv 12^{*} 10(\bmod 13)$
- verifier picks randomly: $z_{4}=2$
- Final check:
$12^{*}\left[\left(9^{*} 7+3(1-7)\right)+(7+3(1-2))\right]=12^{*}\left[6+p_{4}(2)\right]=12^{*}[6+30]$

May 18, 2004
CS151 Lecture 15

Arthur-Merlin Games

- IP permits verifier to keep coin-flips private - necessary feature?
- GNI protocol breaks without it
- Arthur-Merlin game: interactive protocol in which coin-flips are public
- Arthur (verifier) may as well just send results of coin-flips and ask Merlin (prover) to perform any computation he would have done

May 18, $2004 \quad$ CS151 Lecture $15 \quad 19$

Arthur-Merlin Games

- Clearly Arthur-Merlin \subset IP
- "private coins are at least as powerful as public coins"
- Proof that IP = PSPACE actually shows PSPACE \subset Arthur-Merlin $\subset \mathbf{I P} \subset$ PSPACE
- "public coins are at least as powerful as private coins" !

Arthur-Merlin Games

Theorem: for all constant $\mathrm{k} \geq 2$
AM[k] = AM[2].

- Proof:
- we show MA[2] \subset AM[2]
- implies can move all of Arthur's messages to beginning of interaction:

AMAMAM...AM = AAMMAM...AM
$\ldots=$ AAA...AMMM...M

May 18, 2004
CS151 Lecture 15

Arthur-Merlin Games

- Proof (continued):
- given $L \in$ MA[2]
$x \in L \Rightarrow \exists m \operatorname{Pr}_{r}[(x, m, r) \in R]=1$
$\longrightarrow \Rightarrow \operatorname{Pr}_{\mathrm{r}}[\exists \mathrm{m}(\mathrm{x}, \mathrm{m}, \mathrm{r}) \in \mathrm{R}]=1$
${ }^{\text {order reversed }} x \notin L \Rightarrow \forall m \operatorname{Pr}_{r}[(x, m, r) \in R] \leq \varepsilon$

$$
\Longrightarrow \operatorname{Pr}_{r}[\exists m(x, m, r) \in R] \leq 2^{|m|} \varepsilon
$$

- by repeating t times with independent random strings r, can make error $\varepsilon<2^{-t}$
- set $t=m+1$ to get $2^{|m|} \varepsilon<1 / 2$.

MA and AM

$L \in \mathbf{A M}$ iff \exists poly-time language R

$$
x \in L \Rightarrow \operatorname{Pr}_{r}[\exists m(x, m, r) \in R]=1
$$

$$
x \notin L \Rightarrow \operatorname{Pr}_{r}[\exists m(x, m, r) \in R] \leq 1 / 2
$$

- Relation to other complexity classes:
- both contain NP (can elect to not use randomness)
- both contained in Π_{2}. $L \in \Pi_{2}$ iff $\exists R \in P$ for which:

$$
x \in L \Rightarrow \operatorname{Pr}_{r}[\exists m(x, m, r) \in R]=1
$$

$x \notin L \Rightarrow \operatorname{Pr}_{r}[\exists m(x, m, r) \in R]<1$

- so clear that $\mathbf{A M} \subset \Pi_{2}$
- know that $\mathbf{M A} \subset \mathbf{A M}$

May 18, 2004
CS151 Lecture 15 25

MA and AM

May 18, 2004
CS151 Lecture 15

MA and AM

- We know Arthur-Merlin = IP.
- "public coins = private coins"

Theorem (GS): IP[k] AM[O(k)]

- stronger result
- implies for all constant $k \geq 2$,

$$
\mathrm{IP}[\mathrm{k}]=\mathrm{AM}[\mathrm{O}(\mathrm{k})]=\mathrm{AM}[2]
$$

- So, GNI $\in \operatorname{IP}[2]=A M$

May 18, 2004
CS151 Lecture 15 27

MA and AM

Theorem: coNP $\subset \mathbf{A M} \Rightarrow \mathrm{PH}=\mathrm{AM}$.

- Proof:
- suffices to show $\boldsymbol{\Sigma}_{\mathbf{2}} \subset \mathbf{A M}$ (and use $\mathbf{A M} \subset \boldsymbol{\Pi}_{2}$)
$-L \in \boldsymbol{\Sigma}_{2}$ iff \exists poly-time language R
$x \in L \Rightarrow \exists y \forall z(x, y, z) \in R$

$$
x \notin L \Rightarrow \forall y \exists z(x, y, z) \notin R
$$

- Merlin sends y
- 1 AM exchange decides coNP query: $\forall z(x, y, z) \in R$?
- 3 rounds; in AM

Back to Graph Isomorphism

- The payoff:
- not known if GI is NP-complete.
- previous Theorems:
if GI is $\mathbf{N P}$-complete then $\mathbf{P H}=\mathbf{A M}$
- unlikely!
- Proof: GI NP-complete \Rightarrow GNI coNPcomplete $\Rightarrow \operatorname{coNP} \subset \mathbf{A M} \Rightarrow \mathbf{P H}=\mathbf{A M}$
\square
\square
\square

Optimization Problems

- many hard problems (especially NP-hard) are optimization problems
- e.g. find shortest TSP tour
- e.g. find smallest vertex cover
- e.g. find largest clique
- may be minimization or maximization problem
- "opt" = value of optimal solution

CS151 Lecture 15

Approximation Algorithms

- Example approximation algorithm:
- Recall:

Vertex Cover (VC): given a graph G, what is the smallest subset of vertices that touch every edge?

- NP-complete

Approximation Algorithms

- often happy with approximately optimal solution
- warning: lots of heuristics
- we want approximation algorithm with guaranteed approximation ratio of r
- meaning: on every input x, output is guaranteed to have value
at most r^{*} opt for minimization at least opt/r for maximization

[^0]CS151 Lecture 15
32

Approximation Algorithms

- Approximation algorithm for VC:
- pick an edge (x, y), add vertices x and y to VC
- discard edges incident to x or y; repeat.
- Claim: approximation ratio is 2 .
- Proof:
- an optimal VC must include at least one endpoint of each edge considered
- therefore 2^{*} opt \geq actual

May 18, 2004
CS151 Lecture 15
34

Approximation Algorithms

- diverse array of ratios achievable
- some examples:
- (min) Vertex Cover: 2
- MAX-3-SAT (find assignment satisfying
largest \# clauses): 8/7
- (min) Set Cover: In n
- (max) Clique: $n / \log ^{2} n$
- (max) Knapsack: $(1+\varepsilon)$ for any $\varepsilon>0$

Approximation Algorithms

(max) Knapsack: $(1+\varepsilon)$ for any $\varepsilon>0$

- called Polynomial Time Approximation Scheme (PTAS)
- algorithm runs in poly time for every fixed $\varepsilon>0$
- poor dependence on ε allowed
- If all NP optimization problems had a PTAS, almost like $\mathbf{P}=\mathbf{N P}$ (!)

Approximation Algorithms

- A job for complexity: How to explain failure to do better than ratios on previous slide?
- just like: how to explain failure to find polytime algorithm for SAT..
- first guess: probably NP-hard
- what is needed to show this?
- "gap-producing" reduction from NPcomplete problem L_{1} to L_{2}

Approximation Algorithms

- "gap-producing" reduction from NPcomplete problem L_{1} to L_{2}

[^0]: May 18,2004

