

Outline

- accidentally omitted material on PH
- non-uniformity and the PH
- BPP and the PH
- resume interactive proofs and their power

Karp-Lipton

- we know that $\mathbf{P}=\mathbf{N P}$ implies SAT has polynomial-size circuits.
- (showing SAT does not have poly-size circuits is one route to proving $\mathbf{P} \neq \mathbf{N P}$)
- suppose SAT has poly-size circuits
- any consequences?
- might hope: SAT $\in \mathbf{P} /$ poly $\Rightarrow \mathrm{PH}$ collapses to
\mathbf{P}, same as if $S A T \in \mathbf{P}$

May 13, 2004
CS151 Lecture 14

Karp-Lipton

$L=\{x: \forall y \exists z(x, y, z) \in R\}$

- " $\exists z(x, y, z) \in R$?" is in NP
- pretend C solves SAT, use self-reducibility
- Claim: if SAT $\in P /$ poly, then $L=$ $\{x: \exists C \forall y$
[use C repeatedly to find some z for which (x, y, z) $\in R$; accept iff
$(x, y, z) \in R]\}$

Karp-Lipton

$$
\mathrm{L}=\{\mathrm{x}: \forall \mathrm{y} \exists \mathrm{z}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathrm{R}\}
$$

$\{x: \exists C \forall y$ [use C repeatedly to find some z for which $(x, y, z) \in R$; accept iff $(x, y, z) \in R]\}$
$-x \in L$:

- some C decides SAT $\Rightarrow \exists C \forall y[\ldots]$ accepts
$-x \notin L$:
- $\exists \mathrm{y} \forall \mathrm{z}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \notin \mathrm{R} \Rightarrow \forall \mathrm{C} \exists \mathrm{y}[\ldots]$ rejects

$\mathbf{B P P} \subset \mathbf{P H}$

- Recall: don't know BPP different from EXP

Theorem (S,L,GZ): BPP $\subset\left(\Pi_{2} \cap \boldsymbol{\Sigma}_{2}\right)$

- don't know $\boldsymbol{\Pi}_{\mathbf{2}} \cap \boldsymbol{\Sigma}_{2}$ different from EXP but believe much weaker

$$
\text { May 13, } 2004
$$

CS151 Lecture 14

$\mathbf{B P P} \subset \mathbf{P H}$

- Proof:
- BPP language L: p.p.t. TM M: $x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 2 / 3$ $x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$
- strong error reduction: p.p.t. TM M'
- use n random bits ($\left|\mathrm{y}^{\prime}\right|=\mathrm{n}$)
- \# strings y^{\prime} for which $\mathrm{M}^{\prime}\left(\mathrm{x}, \mathrm{y}^{\prime}\right)$ incorrect is at most $2^{2 / 3}$
- (can't achieve with naïve amplification)

May 13, 2004

CS151 Lecture 14
8

$\mathbf{B P P} \subset \mathbf{P H}$

> - given BPP language L : p.p.t. TM M: $$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 2 / 3
$$ $\quad x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$ - showed $L=\left\{x: \exists w \forall z M^{\prime}(x,(w, z))=1\right\}$ - thus BPP $\subset \boldsymbol{\Sigma}_{2}$ - BPP closed under complement $\Rightarrow B P P \subset \Pi_{2}$ - conclude: $\operatorname{BPP} \subset\left(\Pi_{2} \cap \Sigma_{2}\right)$

Interactive Proofs

- interactive proof system for L is an interactive protocol (P, V)

Interactive Proofs

- interactive proof system for L is an interactive protocol (P, V)
- completeness: $x \in L \Rightarrow$
$\operatorname{Pr}[V$ accepts in $(P, V)(x)] \geq 2 / 3$
- soundness: $x \notin L \Rightarrow \forall P^{*}$
$\operatorname{Pr}\left[\mathrm{V}\right.$ accepts in $\left.\left(\mathrm{P}^{*}, \mathrm{~V}\right)(\mathrm{x})\right] \leq 1 / 3$
- efficiency: V is p.p.t. machine
- repetition: can reduce error to any ε

May 13, 2004
CS151 Lecture 14

Interactive Proofs

$\mathbf{I P}=\{\mathrm{L}: \mathrm{L}$ has an interactive proof system\}

- Observations/questions:
- philosophically interesting: captures more broadly what it means to be convinced a statement is true
- clearly NP \subset IP. Potentially larger. How much larger?
- if larger, randomness is essential (why?)

Graph Isomorphism

- graphs $\mathrm{G}_{0}=\left(\mathrm{V}, \mathrm{E}_{0}\right)$ and $\mathrm{G}_{1}=\left(\mathrm{V}, \mathrm{E}_{1}\right)$ are isomorphic $\left(G_{0} \cong G_{1}\right)$ if exists a permutation $\pi: V \rightarrow \mathrm{~V}$ for which

$$
(x, y) \in E_{0} \Leftrightarrow(\pi(x), \pi(y)) \in E_{1}
$$

May 13, 2004
CS151 Lecture 14 15

Graph Isomorphism

- $\mathrm{Gl}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \cong \mathrm{G}_{1}\right\}$
- in NP
- not known to be in \mathbf{P}, or NP-complete
- GNI = complement of GI
- not known to be in NP

Theorem (GMW): GNI $\in \mathbf{I P}$

- indication IP may be more powerful than NP

GNI in IP

- interactive proof system for GNI:

Prover $\quad H=\pi\left(G_{c}\right)$ \begin{tabular}{l}
input: $\left(G_{0}, G_{1}\right)$

Verifier
flip coin
$c \in\{0,1\} ;$

$r=0$,
else $r=1$
:---
random π
accept
iff $r=c$

\end{tabular}

GNI in IP

- completeness:
- if G_{0} not isomorphic to G_{1} then H is isomorphic to exactly one of $\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)$
- prover will choose correct r
- soundness:
- if $\mathrm{G}_{0} \cong \mathrm{G}_{1}$ then prover sees same distribution on H for $\mathrm{c}=0, \mathrm{c}=1$
- no information on $\mathrm{c} \Rightarrow$ any prover P^{*} can succeed with probability at most $1 / 2$
May 13, 2004
CS151 Lecture 14

The power of IP

- GNI \in IP suggests IP more powerful than NP, since GNI not thought to be in NP
- GNI in coNP

Theorem (LFKN): coNP $\subset \mathbf{I P}$

The power of IP

- Proof idea: input: $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- prover: "I claim φ has k satisfying assignments"
- true iff
- $\varphi\left(0, x_{2}, \ldots, x_{n}\right)$ has k_{0} satisfying assignments
- $\varphi\left(1, x_{2}, \ldots, x_{n}\right)$ has k_{1} satisfying assignments
- $\mathrm{k}=\mathrm{k}_{0}+\mathrm{k}_{1}$
- prover sends $\mathrm{k}_{0}, \mathrm{k}_{1}$
- verifier sends random $c \in\{0,1\}$
- prover recursively proves " φ ' $=\varphi\left(c, x_{2}, \ldots, x_{n}\right)$ has k_{c} satisfying assignments"
- at end, verifier can check for itself.

The power of IP

- Analysis of proof idea:
- Completeness: $\varphi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ has k satisfying assignments \Rightarrow accept with prob. 1
- Soundness: $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ does not have k satisfying assigns. \Rightarrow accept prob. $\leq 1-2^{-n}$
- Why? It is possible that k is only off by one; verifier only catches prover if coin flips c are successive bits of this assignment

The power of IP

- First step: arithmetization
- transform $\varphi\left(x_{1}, \ldots x_{n}\right)$ into polynomial $p_{\varphi}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ of degree d over a field F_{q}; q prime $>2^{n}$
- recursively:
- $\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{x}_{\mathrm{i}} \quad \bullet \neg \varphi \rightarrow\left(1-\mathrm{p}_{\varphi}\right)$
- $\varphi \wedge \varphi^{\prime} \rightarrow\left(p_{\varphi}\right)\left(p_{\varphi^{\prime}}\right)$
- $\varphi \vee \varphi^{\prime} \rightarrow 1-\left(1-p_{\varphi}\right)\left(1-p_{\varphi^{\prime}}\right)$
- for all $x \in\{0,1\}^{n}$ we have $p_{\varphi}(x)=\varphi(x)$
- degree $d \leq|\varphi|$
- can compute $p_{\varphi}(x)$ in poly time from φ and x

The power of IP

- Solution to problem (ideas):
- replace $\{0,1\}^{n}$ with $\left(F_{q}\right)^{n}$
- verifier substitutes random field element at each step
- vast majority of field elements catch cheating prover (rather than just 1)

Theorem: $\mathrm{L}=\{(\varphi, \mathrm{k})$: CNF φ has exactly k satisfying assignments is in IP

The power of IP

- Prover wishes to prove:

$$
\mathrm{k}=\Sigma_{x_{1}=0,1} \Sigma_{x_{2}=0,1} \cdots \Sigma_{x_{n}=0,1} p_{\varphi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Define: $k_{z}=\Sigma_{x_{2}=0,1} \cdots \Sigma_{x_{n}=0,1} p_{\varphi}\left(z, x_{2}, \ldots, x_{n}\right)$
- prover sends: k_{z} for all $\mathrm{z} \in \mathrm{F}_{\mathrm{q}}$
- verifier:
- checks that $\mathrm{k}_{0}+\mathrm{k}_{1}=\mathrm{k}$
- sends random $z \in F_{q}$
- continue with proof that

$$
\mathrm{k}_{\mathrm{z}}=\Sigma_{x_{2}=0,1} \cdots \Sigma_{x_{n}=0,1} p_{\varphi}\left(z, x_{2}, \ldots, x_{n}\right)
$$

- at end: verifier checks for itself

May 13, 2004
CS151 Lecture 14

The power of IP

- Prover wishes to prove:
$k=\sum_{x_{1}=0,1} \Sigma_{x_{2}=0,1} \cdots \sum_{x_{n}=0,1} p_{\varphi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Define: $k_{z}=\Sigma_{x_{2}=0,1} \cdots \Sigma_{x_{n}=0,1} p_{\varphi}\left(z, x_{2}, \ldots, x_{n}\right)$
- a problem: can't send k_{z} for all $z \in F_{q}$
- solution: send the polynomial!
- recall degree $d \leq|\varphi|$

Analysis of protocol

- Completeness:
- if $(\varphi, k) \in L$ then honest prover on previous slide will always cause verifier to accept

The actual protocol

Analysis of protocol

- Soundness:
- let $p_{i}(x)$ be the correct polynomials
- let $p_{i}^{*}(x)$ be the polynomials sent by (cheating) prover
$-(\varphi, k) \notin L \Rightarrow p_{1}(0)+p_{1}(1) \neq k$
- either $p_{1}{ }^{*}(0)+p_{1}{ }^{*}(1) \neq k \quad$ (and V rejects)
- or $p_{1}{ }^{*} \neq p_{1} \Rightarrow \operatorname{Pr}_{z_{1}}\left[p_{1}{ }^{*}\left(z_{1}\right)=p_{1}\left(z_{1}\right)\right] \leq \mathrm{d} / \mathrm{q} \leq|\varphi| / 2^{n}$
$-\operatorname{assume}\left(p_{i+1}(0)+p_{i+1}(1)=\right) p_{i}\left(z_{i}\right) \neq p_{i}^{*}\left(z_{i}\right)$
- either $p_{i+1}^{*}(0)+p_{i+1}^{*}(1) \neq p_{i}^{*}\left(z_{i}\right) \quad$ (and V rejects)
- or $p_{i+1}{ }^{*} \neq p_{i+1} \Rightarrow \operatorname{Pr}_{\mathrm{z}_{\mathrm{i}+1}}\left[\mathrm{p}_{\mathrm{i}+1}{ }^{*}\left(\mathrm{z}_{\mathrm{i}+1}\right)=\mathrm{p}_{\mathrm{i}+1}\left(\mathrm{z}_{\mathrm{i}+1}\right)\right] \leq|\varphi| / 2^{n}$

May 13, 2004
CS151 Lecture 14

Analysis of protocol

- Soundness (continued):
- if verifier does not reject, there must be some i for which:

$$
\mathrm{p}_{\mathrm{i}}^{\star} \neq \mathrm{p}_{\mathrm{i}} \text { and yet } \mathrm{p}_{\mathrm{i}}^{*}\left(\mathrm{z}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}\left(\mathrm{z}_{\mathrm{i}}\right)
$$

- for each i, probability is $\leq|\varphi| / 2^{n}$
- union bound: probability that there exists an i for which the bad event occurs is

$$
\leq n|\varphi| / 2^{n} \leq \operatorname{poly}(n) / 2^{n} \ll 1 / 3
$$

Analysis of protocol

- Conclude: $L=\{(\varphi, k)$: CNF φ has exactly k satisfying assignments\} is in IP
- L is coNP-hard, so coNP $\subset I P$
- Question remains:
- NP, coNP $\subset I P$. Potentially larger. How much larger?

Shamir's Theorem

Theorem: IP = PSPACE

- Note: IP \subset PSPACE
- enumerate all possible interactions, explicitly calculate acceptance probability
- interaction extremely powerful!
- An implication: you can interact with master player of Generalized Geography and determine if she can win from the current configuration even if you do not have the power to compute optimal moves!

