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Outline

• accidentally omitted material on PH
– non-uniformity and the PH

– BPP and the PH

• resume interactive proofs and their power
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Karp-Lipton

• we know that P = NP implies SAT has 
polynomial-size circuits.
– (showing SAT does not have poly-size circuits 

is one route to proving P � NP)

• suppose SAT has poly-size circuits
– any consequences?

– might hope: SAT ∈ P/poly � PH collapses to 
P, same as if SAT ∈ P
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Karp-Lipton

Theorem (KL): if SAT has poly-size circuits 
then PH collapses to the second level. 

• Proof:  
– suffices to show  

�
2 ⊂ � 2

– L ∈
�

2 implies:
L = { x : �y �z (x, y, z) ∈ R}

with R ∈ P.
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Karp-Lipton

L = { x : �y �z (x, y, z) ∈ R}

– “�z (x, y, z) ∈ R?” is in NP

– pretend C solves SAT, use self-reducibility

– Claim: if SAT ∈ P/poly, then L = 
{ x : �C �y 

[use C repeatedly to find some z for 
which (x, y, z) ∈ R; accept iff
(x, y, z) ∈ R] }

poly time
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Karp-Lipton

L = { x : �y �z (x, y, z) ∈ R}

{x : �C �y [use C repeatedly to find some z for 
which (x,y,z) ∈ R; accept iff (x,y,z) ∈ R] }

– x ∈ L: 
• some C decides SAT � �C�y […] accepts

– x ∉ L: 
• �y�z (x, y, z) ∉ R � �C�y […] rejects
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BPP ⊂ PH

• Recall: don’t know BPP different from EXP

Theorem (S,L,GZ): BPP⊂ (� 2∩� 2)

• don’t know � 2∩� 2 different from EXP but 
believe much weaker
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BPP ⊂ PH

• Proof: 
– BPP language L: p.p.t. TM M: 

x ∈ L � Pry[M(x,y) accepts] � 2/3
x ∉ L � Pry[M(x,y) rejects] � 2/3

– strong error reduction: p.p.t. TM M’
• use n random bits (|y’| = n)
• # strings y’ for which M’(x, y’) incorrect is at 

most 2n/3

• (can’t achieve with naïve amplification)
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BPP ⊂ PH

• view y’ = (w, z), each of length n/2
• consider output of M’(x, (w, z)):
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so many 
ones, 

some disk 
is all ones

so few 
ones, not 

enough for 
whole disk
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BPP ⊂ PH

• proof (continued):
– strong error reduction: # bad y’ < 2n/3

– y’ = (w, z) with |w| = |z| = n/2
– Claim: L = {x : �w �z M’(x, (w, z)) = 1 }
– x∈L: suppose �w�z M’(x, (w, z)) = 0

• implies ≥ 2n/2 0’s; contradiction

– x∉L: suppose �w�z M’(x, (w, z)) = 1
• implies ≥ 2n/2 1’s; contradiction

May 13, 2004 CS151 Lecture 14 11

BPP ⊂ PH

– given BPP language L: p.p.t. TM M: 

x ∈ L � Pry[M(x,y) accepts] � 2/3
x ∉ L � Pry[M(x,y) rejects] � 2/3

– showed L = {x : �w�z M’(x, (w, z)) = 1}

– thus BPP ⊂ � 2

– BPP closed under complement � BPP ⊂
�

2

– conclude: BPP⊂ (
�

2∩� 2)
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Interactive Proofs

• interactive proof system for L is an 
interactive protocol (P, V)
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Interactive Proofs

• interactive proof system for L is an 
interactive protocol (P, V)
– completeness: x ∈ L �

Pr[V accepts in (P, V)(x)] ≥ 2/3
– soundness: x ∉ L � � P*

Pr[V accepts in (P*, V)(x)] ≤ 1/3 
– efficiency: V is p.p.t. machine

• repetition: can reduce error to any �
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Interactive Proofs

IP = {L : L has an interactive proof 
system}

• Observations/questions:
– philosophically interesting: captures more 

broadly what it means to be convinced a 
statement is true

– clearly NP ⊂ IP. Potentially larger. How much 
larger?

– if larger, randomness is essential (why?)
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Graph Isomorphism

• graphs G0 = (V, E0) and G1 = (V, E1)  are 
isomorphic (G0 ≅ G1) if exists a 
permutation �:V → V for which

(x, y) ∈ E0 ⇔ (�(x), �(y)) ∈ E1
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Graph Isomorphism

• GI = {(G0, G1) : G0 ≅ G1 }
– in NP
– not known to be in P, or NP-complete

• GNI = complement of GI
– not known to be in NP

Theorem (GMW): GNI ∈ IP
– indication IP may be more powerful than NP
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GNI in IP

• interactive proof system for GNI:
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GNI in IP

• completeness:
– if G0 not isomorphic to G1 then H is 

isomorphic to exactly one of (G0, G1) 

– prover will choose correct r

• soundness:
– if G0 ≅ G1 then prover sees same distribution 

on H for c = 0, c = 1

– no information on c � any prover P* can 
succeed with probability at most 1/2
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The power of IP

• GNI ∈ IP suggests IP more powerful than 
NP, since GNI not thought to be in NP

• GNI in coNP

Theorem (LFKN): coNP ⊂ IP
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The power of IP

• Proof idea: input: �(x1, x2, …, xn)
– prover: “I claim � has k satisfying assignments”
– true iff

• �(0, x2, …, xn) has k0 satisfying assignments
• �(1, x2, …, xn) has k1 satisfying assignments
• k = k0 + k1

– prover sends k0, k1

– verifier sends random c ∈{0,1}
– prover recursively proves “�’ = �(c, x2, …, xn) has kc

satisfying assignments”
– at end, verifier can check for itself. 
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The power of IP

• Analysis of proof idea:
– Completeness: �(x1, x2, …, xn) has k 

satisfying assignments � accept with prob. 1
– Soundness: �(x1, x2, …, xn) does not have k 

satisfying assigns. � accept prob. ≤ 1 – 2-n

– Why? It is possible that k is only off by one; 
verifier only catches prover if coin flips c are 
successive bits of this assignment
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The power of IP

• Solution to problem (ideas):
– replace {0,1}n with (Fq)n

– verifier substitutes random field element at 
each step

– vast majority of field elements catch cheating 
prover (rather than just 1)

Theorem: L = { (�, k): CNF � has exactly k 
satisfying assignments} is in IP
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The power of IP

• First step: arithmetization
– transform �(x1, … xn) into polynomial p�(x1, x2, … xn)

of degree d over a field Fq; q prime > 2n

– recursively:
• xi → xi • ¬� → (1 - p�)
• � ∧ �’ → (p�)(p�’)
• � ∨ �’ → 1 - (1 - p�)(1 - p�’)

– for all x ∈ {0,1}n we have p�(x) =�(x)
– degree d ≤ |�|
– can compute p�(x)  in poly time from � and x
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The power of IP

• Prover wishes to prove:
k = �x1 = 0, 1�x2 = 0,1 

… �xn = 0, 1p�(x1, x2, …, xn)

• Define: kz = �x2 = 0,1 
… �xn = 0, 1p�(z, x2, …, xn) 

• prover sends: kz for all z ∈ Fq
• verifier:

– checks that k0 + k1 = k
– sends random z ∈ Fq

• continue with proof that 
kz = �x2 = 0,1 

… �xn = 0, 1p�(z, x2, …, xn)

• at end: verifier checks for itself
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The power of IP

• Prover wishes to prove:
k = �x1 = 0, 1�x2 = 0,1 

… �xn = 0, 1p�(x1, x2, …, xn)

• Define: kz = �x2 = 0,1 
… �xn = 0, 1p�(z, x2, …, xn) 

• a problem: can’t send kz for all z ∈ Fq

• solution: send the polynomial !
– recall degree d ≤ |�|
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The actual protocol
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Analysis of protocol

• Completeness: 
– if (�, k) ∈ L then honest prover on previous 

slide will always cause verifier to accept
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Analysis of protocol

• Soundness: 
– let pi(x) be the correct polynomials
– let pi*(x) be the polynomials sent by (cheating) prover
– (�, k) ∉ L � p1(0) + p1(1) � k
– either p1*(0) + p1*(1) � k (and V rejects)
– or p1* � p1 � Prz1

[p1*(z1) = p1(z1)] ≤ d/q ≤ |�|/2n

– assume (pi+1(0)+pi+1(1)= ) pi(zi) � pi*(zi) 
– either pi+1*(0) + pi+1*(1) � pi*(zi) (and V rejects)
– or pi+1* � pi+1 � Przi+1

[pi+1*(zi+1) = pi+1(zi+1)] ≤ |�|/2n
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Analysis of protocol

• Soundness (continued):
– if verifier does not reject, there must be some 

i for which:

pi* � pi and yet pi*(zi) = pi(zi)

– for each i, probability is ≤ |�|/2n

– union bound: probability that there exists an i 
for which the bad event occurs is 

≤ n|�|/2n ≤ poly(n)/2n << 1/3
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Analysis of protocol

• Conclude: L = { (�, k): CNF � has exactly 
k satisfying assignments} is in IP

• L is coNP-hard, so coNP⊂ IP

• Question remains:
– NP, coNP ⊂ IP. Potentially larger. How much 

larger? 
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Shamir’s Theorem

Theorem: IP = PSPACE
– Note: IP ⊂ PSPACE

• enumerate all possible interactions, explicitly 
calculate acceptance probability

• interaction extremely powerful !
• An implication: you can interact with master 

player of Generalized Geography and determine 
if she can win from the current configuration 
even if you do not have the power to compute 
optimal moves!


