

## Outline

- Natural complete problems for PH and PSPACE
- proof systems
- interactive proofs and their power


## Simpler version of MIN DNF

Theorem (U): MIN DNF is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete.

- we'll consider a simpler variant:
- IRREDUNDANT: given DNF $\varphi$, integer $k$; is there a DNF $\varphi$ ' consisting of at most $k$ terms of $\varphi$ computing same function $\varphi$ does?


## Simpler version of MIN DNF

- analogy with an NP-complete problem:
- SET COVER: given subsets $S_{1}, S_{2}, \ldots, S_{m} \subset U$, integer $k$, is there a collection of at most $k$ sets that cover U.


May 11, 2004
CS151 Lecture 13

## SSC is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

- "sets" in IRREDUNDANT lie in an exponentially larger universe; they are represented succinctly by terms of $\varphi$
- helpful intermediate problem:
- SUCCINCT SET COVER (SSC): given 3DNFs $S=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{m}\right\}$ on $n$ variables, integer $k$; is there a collection $S^{\prime} \subset S$ of size at most $k$ for which $\vee_{\varphi \in S^{\prime}} \equiv 1$ ( $S^{\prime}$ is a cover)?

May 11, 2004
CS151 Lecture 13

## SSC is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

Theorem: SSC is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete.

- Proof:
- in $\boldsymbol{\Sigma}_{2}$ (why?)

$$
" \exists S^{\prime} \subset S \quad \forall x \quad\left[V_{\varphi \in S^{\prime}}(x)=1\right] "
$$

- reduce from QSAT ${ }_{2}$
- instance: $\exists \mathrm{A} \forall \mathrm{B} \varphi(\mathrm{A}, \mathrm{B})=1$
- assume $|\mathrm{A}|=|\mathrm{B}|=\mathrm{n}$

May 11,2004
CS151 Lecture 13

## SSC is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

$$
\exists \mathrm{A} \forall \mathrm{~B} \varphi(\mathrm{~A}, \mathrm{~B})=1
$$

- Proof (continued):
- 2 new sets of variables S, T
$-|S|=|T|=n$
- Define: $w t(S, T)=\#$ of 1 s in $S$ and $T$ together
- " $(\mathrm{S}, \mathrm{T})$ encodes $A$ " means $\forall \mathrm{i}\left(\mathrm{s}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}\right) \wedge\left(\mathrm{t}_{\mathrm{i}}=\neg \mathrm{a}_{\mathrm{i}}\right)$

May 11, 2004
CS151 Lecture 13

## SSC is $\boldsymbol{\Sigma}_{2}$-complete

- From $\varphi(\mathrm{A}, \mathrm{B})$ we define function $f(\mathrm{~S}, \mathrm{~T}, \mathrm{~B})$ :

0 if $w t(S, T)<n$
0 if $w t(S, T)=n$ and $(S, T)$ does not encode any $A$
0 if $w t(S, T)=n$ and $(S, T)$ encodes $A$ for which $\varphi(A, B)=0$
1 if $w t(S, T)=n$ and $(S, T)$ encodes $A$ for which $\varphi(A, B)=1$
1 if $w t(S, T)>n$

- verify: poly(n) size circuit $C$ computes $f$
- verify: $f$ is monotone in $S$ and $T$

May 11, 2004
CS151 Lecture 13

## SSC is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

0 if $w t(S, T)<n$
0 if $w((S, T)<n$
0 if $w(S, T)=n$ and $(S, T)$ does not encode any $A$
0 if $w t(S, T)=n$ and $(S, T)$ encodes $A: \varphi(A, B)=0$

1 if $\mathrm{wt}(\mathrm{S}, \mathrm{T})>\mathrm{n}$
Claim: $\exists A \forall B \varphi(A, B)=1$ implies

$$
S^{\prime}=\left\{\varphi_{i} \mid a_{i}=1\right\} \cup\left\{\varphi_{i+n} \mid a_{i}=0\right\} \cup\left\{\varphi_{m}\right\}
$$

is a cover of size $\mathrm{n}+1$.
Proof: consider each fixed point (S, T, B,W)

- if there exists ( $S^{\prime}, T^{\prime}$ ) that encodes $A$ and we have
$\left(\mathrm{S}^{\prime}, \mathrm{T}^{\prime}\right) \preceq(\mathrm{S}, \mathrm{T})$ then $\varphi_{\mathrm{m}}(\mathrm{S}, \mathrm{T}, \mathrm{B}, \mathrm{W})=1$
- else, $\exists i \quad\left(a_{i}=1\right.$ and $\left.s_{i}=0\right)$ or $\left(a_{i}=0\right.$ and $\left.t_{i}=0\right)$


## SSC is $\boldsymbol{\Sigma}_{2}$-complete

Claim: cover $S^{\prime}$ of size $n+1$ implies

$$
\exists \mathrm{A} \forall \mathrm{~B} \varphi(\mathrm{~A}, \mathrm{~B})=1
$$

Proof:

- S' must contain $\varphi_{m}$; otherwise it fails to cover the all-ones point
- consider the pair ( $S^{*}, T^{*}$ ) for which:
- $\mathrm{s}_{\mathrm{i}}=1$ if $\varphi_{\mathrm{i}} \in \mathrm{S}^{\prime}$ and 0 otherwise
$\cdot t_{i}=1$ if $\varphi_{i+n} \in S^{\prime}$ and 0 otherwise
- must have: $\forall B \forall W \varphi_{m}\left(S^{*}, T^{*}, B, W\right)=1$
- implies: $\forall B f\left(S^{*}, T^{*}, B\right)=1$


## SSC is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

0 if $w t(S, T)=n$ and $(S, T)$ does not encode any $A$
0 if $w t(S, T)=n$ and $(S, T)$ encodes $A: \varphi(A, B)=0$ 0 if $w t(S, T)=n$ and $(S, T)$ encodes $A: \varphi(A, B)=0$
1 if $w t(S, T)=n$ and $(S, T)$ encodes $A: \varphi(A, B)=1$

- defined the pair ( $\mathrm{S}^{*}, \mathrm{~T}^{*}$ ) as follows:
- $s_{i}=1$ if $\varphi_{i} \in S^{\prime}$ and 0 otherwise
$\cdot t_{i}=1$ if $\varphi_{i+n} \in S^{\prime}$ and 0 otherwise
- concluded: $\forall \mathrm{B} f\left(\mathrm{~S}^{*}, \mathrm{~T}^{*}, \mathrm{~B}\right)=1$
- Note: wt (S*, $\left.\mathrm{T}^{*}\right)=n$
$-\left(S^{*}, T^{*}\right)$ must encode A s.t. $\forall B \varphi(A, B)=1$
- Conclude: $\exists A \forall B \varphi(A, B)=1$


## IRR is $\boldsymbol{\Sigma}_{2}$-complete

## - Recall:

IRREDUNDANT: given DNF $\varphi$, integer $k$; is there a DNF $\varphi^{\prime}$ consisting of at most $k$ terms of $\varphi$ computing same function $\varphi$ does?

Theorem: IRR is $\boldsymbol{\Sigma}_{2}$-complete.

- Proof:
- in $\boldsymbol{\Sigma}_{2}: " \exists \varphi^{\prime} \forall \mathrm{x}\left[\varphi^{\prime}(\mathrm{x})=\varphi(\mathrm{x})\right]$ "

May 11, 2004
CS151 Lecture 13

## IRR is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete

- reduce from SSC
- instance: $\mathrm{S}=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{\mathrm{m}}\right\}$
- may assume
- $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m-1}$ single literals
- $\varphi_{\mathrm{m}}$ necessary in any cover
- S is a cover
- write out terms: $\varphi_{m}=t_{1} \vee t_{2} \vee t_{3} \vee \ldots \vee t_{n}$
- produce an instance of IRR:
$\varphi=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee V_{j=1 \ldots m-1}\left(z_{1} \ldots z_{n} \varphi_{j}\right)$
May 11, 2004 CS151 Lecture 13 14


## IRR is $\boldsymbol{\Sigma}_{2}$-complete

$$
\begin{gathered}
S=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{m}=t_{1} \vee \ldots \vee t_{n}\right\} \\
\varphi=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee v_{j=1 \ldots m-1}\left(z_{1} \ldots z_{n} \varphi_{j}\right)
\end{gathered}
$$

- Proof (continued):

Claim: if $S^{\prime} \subset S$ is a cover of size $k$ then
$\varphi^{\prime}=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee v_{j<m, \varphi_{j} \in S^{\prime}}\left(z_{1} z_{2} \ldots z_{n} \varphi_{j}\right)$ is equivalent to $\varphi$ and has $k+n-1$ terms.
Proof: by cases

## IRR is $\boldsymbol{\Sigma}_{2}$-complete

$S=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{m}=t_{1} \vee \ldots \vee t_{n}\right\} ; S^{\prime} \subset S$ $\varphi=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee V_{j=1 \ldots m-1}\left(z_{1} \ldots z_{n} \varphi_{j}\right)$ $\varphi^{\prime}=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee v_{j<m, \varphi ;} \in S^{\prime}\left(z_{1} z_{2} \ldots z_{n} \varphi_{j}\right)$

- more than one $z$ variable 0 : both $\varphi^{\prime}, \varphi$ are 0
$-z_{i} 0$, other $z^{\prime} 1: \varphi$ ', $\varphi$ equivalent to $t_{i}$
- all z's 1:
- $\varphi^{\prime}$ equivalent to $\vee_{\varphi_{j} \in S^{\prime}}\left(z_{1} z_{2} \ldots z_{n} \varphi_{j}\right)$
- $\varphi^{\prime}$ equivalent to $V_{\varphi_{j} \in S}\left(z_{1} \ldots z_{n} \varphi_{j}\right)$
- $\mathrm{S}^{\prime}$ is a cover implies both equivalent to 1

CS151 Lecture 13
16

## IRR is $\boldsymbol{\Sigma}_{2}$-complete

$$
\begin{gathered}
S=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{m}=t_{1} \vee \ldots \vee t_{n}\right\} \\
\varphi=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee \vee_{j=1 \ldots m-1}\left(z_{1} \ldots z_{n} \varphi_{j}\right)
\end{gathered}
$$

- Proof (continued):

Claim: if $\varphi^{\prime} \equiv \varphi$ uses k+n-1 terms of $\varphi$, then there exists a cover $\mathrm{S}^{\prime}$ of size k
Proof:

- each " $t_{\mathrm{i}}$ term" of $\varphi$ must be present


## IRR is $\boldsymbol{\Sigma}_{2}$-complete

$$
\begin{gathered}
S=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{m}=t_{1} \vee \ldots \vee t_{n}\right\} \\
\varphi=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee V_{j=1 \ldots m-1}\left(z_{1} \ldots z_{n} \varphi_{j}\right) \\
\varphi^{\prime}=V_{i=1 \ldots n}\left(z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{n} t_{i}\right) \vee ? ? ?(k+n-1 \text { terms total) }
\end{gathered}
$$

- other k-1 terms all involve some $\varphi_{j}$
- let S' be these $\varphi_{j}$ together with $\varphi_{m}$
$\left(\vee_{\varphi_{j} \in S^{\prime}} \varphi_{j}\right) \equiv \varphi_{z \leftarrow 11 \ldots 1}^{\prime} \equiv \varphi_{z \leftarrow 11 \ldots 1} \equiv\left(\vee_{\varphi_{j} \in S} \varphi_{j}\right) \equiv 1$
- conclude $S^{\prime}$ is a cover of size $k$


## PSPACE

- General phenomenon: many 2-player games are PSPACE-complete.

- GEOGRAPHY $=\{(\mathrm{G}, \mathrm{s}): \mathrm{G}$ is a directed graph and player I can win from node s\}

May 11, 2004
CS151 Lecture 13

## PSPACE

Theorem: GEOGRAPHY is PSPACEcomplete.

## Proof:

- in PSPACE
- easily expressed with alternating quantifiers
- PSPACE-hard
- reduction from QSAT

CS151 Lecture 13

## PSPACE

$\exists x_{1} \forall x_{2} \exists x_{3} \ldots\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{3} \vee x_{1}\right) \wedge \ldots \wedge\left(x_{1} \vee \neg x_{2}\right)$


## Proof systems

$L=\left\{\left(A, 1^{k}\right): A\right.$ is a true mathematical assertion

## Proof systems

- given language $L$, goal is to prove $x \in L$
- proof system for $L$ is a verification algorithm V - completeness: $x \in L \Rightarrow \exists$ proof, V accepts (x, proof) "true assertions have proofs"
- soundness: $x \notin L \Rightarrow \forall$ proof*, $V$ rejects (x, proof*)
"false assertions have no proofs"
- efficiency: $\forall \mathrm{x}$, proof, $\mathrm{V}(\mathrm{x}$, proof) runs in polynomial time in $|x|$


## Classical Proofs

- previous definition:
"classical" proof system
- recall:
$\mathrm{L} \in \mathrm{NP}$ iff expressible as $L=\left\{x\left|\exists y,|y|<|x|^{k},(x, y) \in R\right\}\right.$ and $R \in P$.
- NP is the set of languages with classical proof systems ( R is the verifier)

May 11, 2004
CS151 Lecture 13

## Interactive Proofs

- interactive proof system for $L$ is an interactive protocol ( $\mathrm{P}, \mathrm{V}$ )



## Interactive Proofs

- Two new ingredients:
- randomness: verifier tosses coins, errs with some small probability
- interaction: rather than "reading" proof, verifier interacts with computationally unbounded prover
- NP proof systems lie in this framework: prover sends proof, verifier does not use randomness

May 11, $2004 \quad$ CS151 Lecture 13 26

## Interactive Proofs

- interactive proof system for $L$ is an interactive protocol ( $\mathrm{P}, \mathrm{V}$ )
- completeness: $x \in L \Rightarrow$
$\operatorname{Pr}[V$ accepts in $(P, V)(x)] \geq 2 / 3$
- soundness: $x \notin L \Rightarrow \forall P^{*}$
$\operatorname{Pr}\left[\mathrm{V}\right.$ accepts in $\left.\left(\mathrm{P}^{*}, \mathrm{~V}\right)(\mathrm{x})\right] \leq 1 / 3$
- efficiency: $V$ is p.p.t. machine
- repetition: can reduce error to any $\varepsilon$

May 11, 2004
CS151 Lecture 13
28

## Interactive Proofs

## $\mathbf{I P}=\{\mathrm{L}: \mathrm{L}$ has an interactive proof system\}

- Observations/questions:
- philosophically interesting: captures more broadly what it means to be convinced a statement is true
- clearly NP $\subset$ IP. Potentially larger. How much larger?
- if larger, randomness is essential (why?)


## Graph Isomorphism

- graphs $\mathrm{G}_{0}=\left(\mathrm{V}, \mathrm{E}_{0}\right)$ and $\mathrm{G}_{1}=\left(\mathrm{V}, \mathrm{E}_{1}\right)$ are isomorphic $\left(\mathrm{G}_{0} \cong \mathrm{G}_{1}\right)$ if exists a permutation $\pi: V \rightarrow \mathrm{~V}$ for which

$$
(\mathrm{x}, \mathrm{y}) \in \mathrm{E}_{0} \Leftrightarrow(\pi(\mathrm{x}), \pi(\mathrm{y})) \in \mathrm{E}_{1}
$$



[^0]CS151 Lecture 13

## Graph Isomorphism

- $\mathrm{GI}=\left\{\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right): \mathrm{G}_{0} \cong \mathrm{G}_{1}\right\}$
- in NP
- not known to be in P, or NP-complete
- GNI = complement of GI
- not known to be in NP

Theorem (GMW): GNI $\in \mathbf{I P}$

- indication IP may be more powerful than NP

May 11, 2004
CS151 Lecture 13
31

## GNI in IP

- interactive proof system for GNI:



## GNI in IP

- completeness:
- if $G_{0}$ not isomorphic to $G_{1}$ then $H$ is isomorphic to exactly one of $\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)$
- prover will choose correct r
- soundness:
- if $\mathrm{G}_{0} \cong \mathrm{G}_{1}$ then prover sees same distribution on H for $\mathrm{c}=0, \mathrm{c}=1$
- no information on $\mathrm{c} \Rightarrow$ any prover $\mathrm{P}^{*}$ can succeed with probability at most 1/2


[^0]:    May 11, 2004

