CS151

Complexity Theory
Lecture 12
May 6, 2004

Outline

- The Polynomial-Time Hierarachy (PH)
- Complete problems for classes in PH, PSPACE
- BPP and the PH
- non-uniformity and the PH

May 6, 2004
CS151 Lecture 12

The Polynomial-Time Hierarchy

$\Sigma_{0}=\Pi_{0}=P$		
$\Delta_{1}=P^{P}$	$\Sigma_{1}=N P$	$\Pi_{1}=\operatorname{coNP}$
$\Delta_{2}=$ PNP N	$\Sigma_{2}=N P^{N P}$	$\Pi_{2}=\operatorname{coNPNP}$
$\Delta_{i+1}=$ P $^{\Sigma_{i}}$	$\Sigma_{i+i}=N P^{\Sigma_{i}}$	$\Pi_{i+1}=\operatorname{coNP}{ }^{\Sigma_{i}}$

Polynomial Hierarchy PH = $\cup_{i} \boldsymbol{\Sigma}_{\mathrm{i}}$

May 6, 2004
CS151 Lecture 12 3

The Polynomial-Time Hierarchy

$$
\begin{gathered}
\Sigma_{0}=\Pi_{0}=P \\
\Delta_{i+1}=P^{\Sigma_{i}} \\
\Sigma_{i+i}=N P^{\Sigma_{i}} \quad \Pi_{i+1}=\operatorname{coN} P^{\Sigma_{i}}
\end{gathered}
$$

- Example:
- MIN CIRCUIT: given Boolean circuit C, integer k ; is there a circuit C^{\prime} of size at most k that computes the same function C does?
- MIN CIRCUIT $\in \boldsymbol{\Sigma}_{2}$

The Polynomial-Time Hierarchy

$$
\begin{array}{cc}
\Sigma_{0}=\Pi_{0}=P \\
\Delta_{i+1}=P^{\Sigma_{i}} & \Sigma_{i+i}=N P^{\Sigma_{i}} \quad \Pi_{i+1}=\operatorname{coN} P^{\Sigma_{i}}
\end{array}
$$

- Example:
- EXACT TSP: given a weighted graph G, and in integer k; is the k-th bit of the length of the shortest TSP tour in G a 1?
- EXACT TSP $\in \Delta_{2}$

Useful characterization

- Recall: $L \in N P$ iff expressible as $L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$
where $R \in \mathbf{P}$.
- Corollary: $L \in \mathbf{c o N P}$ iff expressible as $L=\left\{x\left|\forall y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$
where $R \in \mathbf{P}$.

May 6, 2004
CS151 Lecture 12

Useful characterization

Theorem: $L \in \boldsymbol{\Sigma}_{\mathrm{i}}$ iff expressible as $L=\left\{x\left|\exists y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$ where $R \in \Pi_{i-1}$.

- Corollary: $L \in \boldsymbol{\Pi}_{\mathbf{i}}$ iff expressible as $L=\left\{x\left|\forall y,|y| \leq|x|^{k},(x, y) \in R\right\}\right.$
where $R \in \boldsymbol{\Sigma}_{\mathrm{i}-1}$.

May 6, 2004
CS151 Lecture 12

Useful characterization

- Proof of Theorem:
- induction on i
- base case on previous slide
(\Leftarrow)
- we know $\Sigma_{i}=N P^{\Sigma_{i-1}}=N P^{\Pi_{i-1}}$
- guess y, ask oracle if $(x, y) \in R$

Useful characterization

- Proof (continued):
- try: $R=\{(x, y): y$ describes valid path of M's computation leading to $\left.\mathrm{q}_{\text {accept }}\right\}$
- valid path = step-by-step description including correct yes/no answer for each A-oracle query $\mathrm{z}_{\mathrm{j}} \quad\left(\mathrm{A} \in \boldsymbol{\Sigma}_{\mathrm{i}-1}\right)$
- verify "no" queries in Π_{i-1} :

$$
\text { e.g: } z_{1} \notin A \wedge z_{3} \notin A \wedge \ldots \wedge z_{8} \notin A
$$

- for each "yes" query $z_{j}: \exists w_{j},\left|w_{j}\right| \leq\left|z_{j}\right| k$ with $\left(z_{j}, w_{j}\right) \in R$ ' for some R ' $\in \Pi_{i-2}$ by induction.
- for each "yes" query z_{j} put w_{j} in description of path y

Useful characterization

- Proof (continued):
(\Rightarrow)
- given $\mathrm{L} \in \boldsymbol{\Sigma}_{\mathrm{i}}=\mathrm{NP}^{\Sigma_{\mathrm{i}-1}}$ decided by ONTM M running in time n^{k}
- try: $R=\{(x, y): y$ describes valid path of M's computation leading to $\left.\mathrm{q}_{\text {accept }}\right\}$
- but how to recognize valid computation path when it depends on result of oracle queries?

May 6, 2004
CS151 Lecture 12
10

Useful characterization

- Proof (continued):
- single language R in Π_{i-1} :
$(x, y) \in R$
\Leftrightarrow
all "no" $z_{j} \notin A$ and
all "yes" z_{j} have $\left(z_{j}, w_{j}\right) \in R$ ' and y is a path leading to $q_{\text {accept }}$.
- Note: AND of Π_{i-1} predicates is in Π_{i-1}.

May 6, 2004
CS151 Lecture 12

Alternating quantifiers

Nicer, more usable version:

- $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ iff expressible as
$\mathrm{L}=\left\{\mathrm{x} \mid \exists \mathrm{y}_{1} \forall \mathrm{y}_{2} \exists \mathrm{y}_{3} \ldots \mathrm{Z} \mathrm{y}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}\right) \in \mathrm{R}\right\}$
where $Q=\forall / \exists$ if i even/odd, and $R \in \mathbf{P}$
- $L \in \boldsymbol{\Pi}_{\mathbf{i}}$ iff expressible as
$\mathrm{L}=\left\{\mathrm{x} \mid \forall \mathrm{y}_{1} \exists \mathrm{y}_{2} \forall \mathrm{y}_{3} \ldots \mathrm{Q} \mathrm{y}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}\right) \in \mathrm{R}\right\}$ where $\mathbf{Q}=\exists / \forall$ if i even/odd, and $R \in \mathbf{P}$

May 6, 2004

Alternating quantifiers

- Proof:
$-(\Rightarrow)$ induction on i
- base case: true for $\boldsymbol{\Sigma}_{1}=\mathbf{N P}$ and $\boldsymbol{\Pi}_{1}=\mathbf{c o N P}$
- consider $L \in \boldsymbol{\Sigma}_{\mathrm{i}}$:
$L=\left\{x \mid \exists y_{1}\left(x, y_{1}\right) \in R^{\prime}\right\}$, for $R^{\prime} \in \Pi_{i-1}$
$\mathrm{L}=\left\{\mathrm{x} \mid \exists \mathrm{y}_{1} \forall \mathrm{y}_{2} \exists \mathrm{y}_{3} \ldots \mathrm{Q} \mathrm{y}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}\right) \in \mathrm{R}\right\}$
- same argument for $L \in \boldsymbol{\Pi}_{\mathbf{i}}$
$-(\Leftarrow)$ exercise.

Alternating quantifiers
Pleasing viewpoint:
" $\exists \forall \exists \forall \exists \forall \exists . . . "$ PSPACE

May 6, 2004

Complete problems

- Recall:

MIN CIRCUIT: given Boolean circuit C, integer k is there a circuit C^{\prime} of size at most k that computes the same function C does?
$\left\{(C, k) \mid \exists C^{\prime} \forall x\left(\left|C^{\prime}\right| \leq k\right.\right.$ and $\left.\left.C^{\prime}(x)=C(x)\right)\right\}$

- Conclude: in $\boldsymbol{\Sigma}_{2}$
- (open whether it is complete for $\boldsymbol{\Sigma}_{\mathbf{2}}$)

Complete problems

- three variants of SAT:
- QSAT $_{i}$ (i odd) $=$
\{3-CNFs $\varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ for which $\left.\exists x_{1} \forall x_{2} \exists x_{3} \ldots \exists x_{i} \varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)=1\right\}$
- QSAT $_{i}$ (i even) $=$
\{3-DNFs $\varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ for which $\left.\exists x_{1} \forall x_{2} \exists x_{3} \ldots \forall x_{i} \varphi\left(x_{1}, x_{2}, \ldots, x_{i}\right)=1\right\}$
- QSAT $=\{3-$ CNFs φ for which $\left.\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1\right\}$

May 6, 2004
CS151 Lecture 12

QSAT ${ }_{i}$ is $\boldsymbol{\Sigma}_{\mathbf{i}}$-complete

Theorem: QSAT $_{i}$ is Σ_{i}-complete.

- Proof: (clearly in $\boldsymbol{\Sigma}_{\mathbf{i}}$)
- assume i odd; given $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ in form
$\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots \exists y_{i}\left(x, y_{1}, y_{2}, \ldots, y_{i}\right) \in R\right\}$

QSAT ${ }_{i}$ is $\boldsymbol{\Sigma}_{\mathbf{i}}$-complete

- Proof (continued)
- assume i even; given $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$ in form

$$
\left\{x \mid \exists y_{1} \forall y_{2} \exists \mathrm{y}_{3} \ldots \forall \mathrm{y}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{i}}\right) \in \mathrm{R}\right\}
$$

May 6, 2004 CS151 Lecture 12

QSAT is PSPACE-complete

Theorem: QSAT is PSPACE-complete.

- Proof:
- in PSPACE: $\exists x_{1} \forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?
- " $\exists x_{1}$ ": for each x_{1}, recursively solve

$$
\forall x_{2} \exists x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) ?
$$

- if encounter "yes", return "yes"
- " $\forall x_{1}$ ": for each x_{1}, recursively solve
$\exists x_{2} \forall x_{3} \ldots Q x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) ?$
- if encounter "no", return "no"
- base case: evaluating a 3-CNF expression
- poly(n) recursion depth
- poly(n) bits of state at each level

May 6, 2004
CS151 Lecture 12
22

QSAT is PSPACE-complete

- Proof (continued):
- given TM M deciding $L \in$ PSPACE; input x
- configuration graph has $2^{n^{k}}$ nodes
- recall:
$\operatorname{PATH}(X, Y, i) \Leftrightarrow$ path from X to Y of length at most 2^{i}
- goal: 3-CNF $\varphi\left(w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right)$
$\exists \mathrm{w}_{1} \forall \mathrm{w}_{2} \ldots \mathrm{Qw}_{\mathrm{m}} \varphi\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}\right)$
\Leftrightarrow PATH(START, ACCEPT, $\left.n^{k}\right)$
May 6, 2004
CS151 Lecture 12 ${ }^{23}$

QSAT is PSPACE-complete

- for $\mathrm{i}=0,1, \ldots \mathrm{n}^{\mathrm{k}}$ produce quantified Boolean expressions $\psi_{i}(A, B)$

$$
\exists \mathrm{w}_{1} \forall \mathrm{w}_{2} \ldots \psi_{\mathrm{i}}(\mathrm{~A}, \mathrm{~B}, \mathrm{~W}) \Leftrightarrow \operatorname{PATH}(\mathrm{A}, \mathrm{~B}, \mathrm{i})
$$

- convert $\Psi_{n k}$ to 3-CNF φ
- add variables V
- hardwire START, ACCEPT

$$
\exists \mathrm{w}_{1} \forall \mathrm{w}_{2} \ldots \exists \mathrm{~V} \varphi(\mathrm{~W}, \mathrm{~V}) \Leftrightarrow \mathrm{x} \in \mathrm{~L}
$$

QSAT is PSPACE-complete

- Proof (continued):
$-\psi_{o}(A, B)=1 \mathrm{iff}$
- $A=B$ or

Boolean expression

- A yields B in one step of M of size $O\left(n^{k}\right.$

TIIIIIIITI TIIT		

STEP
\qquad

QSAT is PSPACE-complete

- recall Savitch's algorithm:
$\operatorname{PATH}(A, B, i+1)$
\Leftrightarrow
$\exists Z[\operatorname{PATH}(A, Z, i) \wedge \operatorname{PATH}(Z, B, i)]$
- cannot define $\Psi_{i+1}(A, B)$ to be

$$
\exists Z\left[\psi_{i}(A, Z) \wedge \psi_{i}(Z, B)\right]
$$

(why?)

QSAT is PSPACE-complete

- Proof (continued):
- Key: reuse expressions just as Savitch reuses stack records...
- define $\Psi_{i+1}(A, B)$ to be
$\exists Z \forall X \forall Y\left[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \Rightarrow \psi_{i}(X, Y)\right]$
$-\Psi_{i}(X, Y)$ is preceded by quantifiers
- move to front (they don't involve X, Y, Z, A, B)

QSAT is PSPACE-complete

$\Psi_{0}(A, B)=1$ iff $A=B$ or A yields B in 1 step $\exists Z \forall X \forall Y\left[((X=A \wedge Y=Z) \vee(X=Z \wedge Y=B)) \Rightarrow \Psi_{i}(X, Y)\right]$
$-\left|\psi_{0}\right|=O\left(n^{k}\right)$
$-\left|\psi_{i+1}\right|=O\left(n^{k}\right)+\left|\psi_{\mathrm{i}}\right|$

- total size of $\Psi_{n k}$ is $O\left(n^{k}\right)^{2}=\operatorname{poly}(n)$
- logspace reduction

PH collapse

Theorem: if $\boldsymbol{\Sigma}_{\mathrm{i}}=\boldsymbol{\Pi}_{\mathrm{i}}$ then for all $\mathrm{j}>\mathrm{i}$

$$
\Sigma_{\mathrm{j}}=\Pi_{\mathrm{j}}=\Delta_{\mathrm{j}}=\Sigma_{\mathrm{i}}
$$

"the polynomial hierarchy collapses to the i-th level"

- Proof:
- sufficient to show $\boldsymbol{\Sigma}_{\mathbf{i}}=\boldsymbol{\Sigma}_{\mathbf{i}+1}$
- then $\boldsymbol{\Sigma}_{\mathbf{i}+1}=\boldsymbol{\Sigma}_{\mathbf{i}}=\boldsymbol{\Pi}_{\mathbf{i}}=\boldsymbol{\Pi}_{\mathbf{i}+1}$; apply theorem again

PH collapse

- recall: $L \in \boldsymbol{\Sigma}_{i+1}$ iff expressible as
$L=\{x \mid \exists y(x, y) \in R\}$
where $R \in \boldsymbol{\Pi}_{\mathbf{i}}$
- since $\boldsymbol{\Pi}_{\mathbf{i}}=\boldsymbol{\Sigma}_{\mathbf{i}}, R$ expressible as

$$
R=\left\{(x, y) \mid \exists z((x, y), z) \in R^{\prime}\right\}
$$

where $R^{\prime} \in \boldsymbol{\Pi}_{\mathrm{i}-1}$

- together: $L=\left\{x \mid \exists(y, z) \quad(x,(y, z)) \in R^{\prime}\right\}$
- conclude $L \in \boldsymbol{\Sigma}_{\mathbf{i}}$

Oracles vs. Algorithms

A point to ponder:

- given poly-time algorithm for SAT
- can you solve MIN CIRCUIT efficiently?
- what other problems? Entire complexity classes?
- given SAT oracle
- same input/output behavior
- can you solve MIN CIRCUIT efficiently?

Natural complete problems

- MIN CIRCUIT
- good candidate, still open
- MIN DNF: given DNF φ, integer k ; is there a

DNF φ ' of size at most k computing same function φ does?

- example:
$x_{1} x_{2} x_{3} \vee x_{1} x_{2} \neg x_{3} \vee x_{4}$
May 6, 2004
CS151 Lecture 12
${ }_{3}$

Natural complete problems

- We now have versions of SAT complete for levels in PH, PSPACE
- Natural complete problems?
- PSPACE: games
- PH: almost all natural problems lie in the second level

Natural complete problems

- MIN CIRCUIT
- good candidate, still open
- MIN DNF: given DNF φ, integer k; is there a

DNF φ ' of size at most k computing same
function φ does?

- example:
$X_{1} x_{2} x_{3} \vee X_{1} x_{2} \neg X_{3} \vee X_{4} \equiv X_{1} x_{2} \vee X_{4}$
May 6, 2004
CS151 Lecture 12

Simpler version of MIN DNF

Theorem (U): MIN DNF is $\boldsymbol{\Sigma}_{\mathbf{2}}$-complete.

- we'll consider a simpler variant:
- IRREDUNDANT: given DNF φ, integer k; is there a DNF φ ' consisting of at most k terms of φ computing same function φ does?

Simpler version of MIN DNF

- analogy with an NP-complete problem:
- SET COVER: given subsets $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}} \subset \mathrm{U}$, integer k , is there a collection of at most k sets that cover U.

May 6, 2004
CS151 Lecture 12

