

Outline

- Extractors
- Trevisan's extractor
- RL and undirected STCONN

May 4, 2004

CS151 Lecture 11

Extractors

- "Hardware" side
- what physical source?
- ask the physicists...
- "Software" side
- what is the minimum we need from the physical source?

Extractors

- imperfect sources:
- "stuck bits":

111111(1) (2) (2)

- "correlation":
(8)" " (8) " "
- "more insidious correlation": perfect squares
- there are specific ways to get independent unbiased random bits from specific imperfect physical sources

[^0]CS151 Lecture 11

Extractors

- want to assume we don't know details of physical source
- general model capturing all of these?
- yes: "min-entropy"
- universal procedure for all imperfect sources?
- yes: "extractors"

May 4, 2004
CS151 Lecture 11

Min-entropy

- General model of physical source w/k < n bits of hidden randomness
string sampled uniformly from this set

Definition: random variable X on $\{0,1\}^{n}$ has min-entropy $\min _{x}-\log (\operatorname{Pr}[X=x])$

- min-entropy k implies no string has weight more than 2^{-k}
May 4, 2004
CS151 Lecture 11

Extractor

" $(\mathrm{k}, \varepsilon)$-extractor" \Rightarrow for all X with min-entropy k :

- output fools all circuits C:

$$
\left|\operatorname{Pr}_{z}[C(z)=1]-\operatorname{Pr}_{y, x \leftarrow x}[C(E(x, y))=1]\right| \leq \boldsymbol{\varepsilon}
$$

- distributions $E\left(X, U_{t}\right)$, U_{m} " ε-close" (L_{1} dist $\leq 2 \varepsilon$)
- Notice similarity to PRGs
- output of PRG fools all efficient tests
- output of extractor fools all tests

May 4, 2004
CS151 Lecture 11

Extractor

- Extractor: universal procedure for "purifying" imperfect source:

$-E$ is efficiently computable
- truly random seed as "catalyst"

Extractors

- Using extractors
- use output in place of randomness in any application
- alters probability of any outcome by at most ε
- Main motivation:
- use output in place of randomness in algorithm
- how to get truly random seed?
- enumerate all seeds, take majority

Extractors

- Goals:
short seed
long output
many k's
$m=k^{\Omega(1)}$
$\mathrm{k}=\mathrm{n}^{\Omega(1)}$

$$
\mathrm{k}=\mathrm{n}^{2 \pi}(\mathrm{t}
$$

CS151 Lecture 11

Extractors

- random function for E achieves best!
- but we need explicit constructions
- usually complex + technical
- optimal extractors still open
- Trevisan Extractor:
- insight: use NW generator with source string in place of hard function
- this works (!!)
- proof slightly different than NW, easier

Trevisan Extractor

- Ingredients:
- error-correcting code

$$
\mathrm{C}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}^{\prime}}
$$

distance $\left(1 / 2-1 / 4 \mathrm{~m}^{-4}\right) \mathrm{n}^{\prime}$ blocklength $\mathrm{n}^{\prime}=$ poly (n)

- ($\log \mathrm{n}^{\prime}, a=\delta \log \mathrm{n} / 3$) design:
$\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}} \subset\left\{1 \ldots \mathrm{t}=\mathrm{O}\left(\log \mathrm{n}^{\prime}\right)\right\}$
$E(x, y)=C(x)\left[y_{\mid S_{1}}\right] \circ C(x)\left[y_{\mid S_{2}}\right] \ldots \circ C(x)\left[y_{\mid S_{m}}\right]$

May 4, 2004
CS151 Lecture 11

Trevisan Extractor

Theorem (T): E is an extractor for min-entropy $\mathrm{k}=\mathrm{n}^{\text {® }}$, with

- output length $m=k^{1 / 3}$
- seed length $t=O(\log n)$
- error $\varepsilon \leq 1 / \mathrm{m}$

Trevisan Extractor

- Proof:
- assume $X \subseteq\{0,1\}^{n}$
- assume fails to ε-pass statistical test C

$$
\left|\operatorname{Pr}_{z}[C(z)=1]-\operatorname{Pr}_{x \in X, y}[C(E(x, y))=1]\right|>\varepsilon
$$

- distinguisher $\mathrm{C} \Rightarrow$ predictor P :
$\operatorname{Pr}_{\mathrm{x} \in \mathrm{X}, \mathrm{y}}\left[\mathrm{P}\left(\mathrm{E}(\mathrm{x}, \mathrm{y})_{1} \cdots{ }_{i-1}\right)=E(\mathrm{x}, \mathrm{y}) \mathrm{i}\right]>1 / 2+\varepsilon / m$

Trevisan Extractor

Trevisan Extractor

- Proof (continued):
- for at least $\varepsilon / 2$ of $x \in X$ we have:

$$
\operatorname{Pr}_{y}\left[P\left(E(x, y)_{1} \cdots i_{-1}\right)=E(x, y)_{i}\right]>1 / 2+\varepsilon /(2 m)
$$

- fix bits w outside of S_{i} to preserve advantage
$\operatorname{Pr}_{\mathrm{y}}\left[\mathrm{P}\left(\mathrm{E}\left(\mathrm{x} ; \mathrm{wy}^{\prime}\right)_{1} \cdots \mathrm{i}-1\right)=\mathrm{C}(\mathrm{x})\left[\mathrm{y}^{\prime}\right]\right]>1 / 2+\varepsilon /(2 \mathrm{~m})$
- as vary y^{\prime}, for $\mathrm{j} \neq \mathrm{i}$, j -th bit of $\mathrm{E}(\mathrm{x}$; wy') varies over only 2^{a} values
- build up to ($\mathrm{m}-1$) tables of $2^{\text {a }}$ values to supply $E\left(x ; w^{\prime}\right)_{1} \cdots i-1$

Trevisan Extractor

- Proof (continued):
$-(m-1)$ tables of size 2^{a} constitute a description of a string that has $1 / 2+\varepsilon /(2 m)$ agreement with $\mathrm{C}(\mathrm{x})$
- \# of $x \in X$ with such a description?
- $\exp \left((m-1) 2^{a}\right)=\exp \left(n^{\delta 2 / 3}\right)=\exp \left(k^{2 / 3}\right)$ strings
- Johnson Bound: each string accounts for at most $\mathrm{O}\left(\mathrm{m}^{4}\right)$ x's
- total \#: O(m4) $\exp \left(k^{2 / 3}\right) \ll 2^{k}(\varepsilon / 2)$
- contradiction

May 4, 2004
CS151 Lecture 11

Strong error reduction

- $L \in B P P$ if there is a p.p.t. TM M:
$x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 2 / 3$
$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 2 / 3$
- Want:
$x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ accepts $] \geq 1-2^{-k}$
$x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y)$ rejects $] \geq 1-2^{-k}$
- We saw: repeat $O(k)$ times
$-\mathrm{n}=\mathrm{O}(\mathrm{k}) \cdot|\mathrm{y}|$ random bits; $2^{\mathrm{n}-\mathrm{k}}$ bad strings
May 4, 2004
CS151 Lecture 11

Strong error reduction

- Better:
- E extractor for $\mathrm{k}=|\mathrm{y}|^{3}=\mathrm{n}^{\delta}, \varepsilon<1 / 6$
- pick random $w \in\{0,1\}^{n}$, run $\mathrm{M}(x, \mathrm{E}(\mathrm{w}, \mathrm{z}))$ for all $z \in\{0,1\}^{\mathrm{t}}$, take majority
- call w "bad" if majz $M(x, E(w, z)$) incorrect $\left|\operatorname{Pr}_{z}[M(x, E(w, z))=b]-\operatorname{Pr}_{y}[M(x, y)=b]\right| \geq 1 / 6$
- extractor property: at most 2^{k} bad w
-n random bits; $2^{\mathrm{n}^{\text {б }}}$ bad strings

May 4, 2004

CS151 Lecture 11

RL

- Recall: probabilistic Turing Machine
- deterministic TM with extra tape for "coin flips"
- RL (Random Logspace)
$-L \in R L$ if there is a probabilistic logspace TM M:

$$
x \in L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { accepts }] \geq 1 / 2
$$

$$
x \notin L \Rightarrow \operatorname{Pr}_{y}[M(x, y) \text { rejects }]=1
$$

- important detail \#1: only allow one-way access to coin-flip tape
- important detail \#2: explicitly require to run in polynomial time

May 4, 2004
CS151 Lecture 11

RL

- $\mathbf{L} \subseteq \mathbf{R L} \subseteq \mathbf{N L} \subseteq \operatorname{TIME}\left(\log ^{2} n\right)$
- Theorem (SZ) : RL \subseteq TIME $\left(\log ^{3 / 2} n\right)$
- Recall: STCONN is NL-complete.
- Undirected STCONN: given an undirected graph $G=(V, E)$, nodes s, t, is there a path $\mathrm{s} \rightarrow \mathrm{t}$
Theorem: USTCONN $\in \mathbf{R L}$

Undirected STCONN

- Proof sketch: (in Papadimitriou)
- add self-loop to each vertex (technical reasons)
- start at s, take a random walk for $2|\mathrm{~V}||\mathrm{E}|$ steps, accept if see t
- Lemma: expected return time for any node i is $2|E| / d_{i}$
- suppose $s=v_{1}, v_{2}, \ldots, v_{n}=t$ is a path
- expected time from v_{i} to v_{i+1} is $\left(d_{i} / 2\right)\left(2|E| / d_{i}\right)=|E|$
- expected time to reach $v_{n} \leq|\mathrm{V}||\mathrm{E}|$
- $\operatorname{Pr}[$ fail reach t in $2|\mathrm{~V}||E|$ steps $] \leq 1 / 2$

A motivating question

- Central problem in logic synthesis:

$$
\begin{aligned}
& \text { - given Boolean circuit } \mathrm{C} \text {, integer } \mathrm{k} \\
& \text { - is there a circuit } \mathrm{C} \text { ' of size at most } \\
& \mathrm{k} \text { that computes the same function } \\
& \mathrm{C} \text { does? } \\
& \text { Complexity of this problem? } \\
& \text { - NP-hard? in NP? in coNP? in PSPACE? } \\
& \text { - complete for any of these classes? } \\
& \text { May 4, 2004 } \\
& \text { CS151 Lecture } 11
\end{aligned}
$$

Outline

- Oracle Turing Machines
- The Polynomial-Time Hierarchy (PH)
- Quantified SAT
- Complete problems for classes in PH, PSPACE

$$
\begin{array}{lll}
\text { May 4, } 2004 & \text { CS151 Lecture } 11 & 25
\end{array}
$$

Oracle Turing Machines

- Nondeterministic OTM
- defined in the same way
- (transition relation, rather than function)
- oracle is like a subroutine, or function in your favorite PL
- but each call counts as single step
e.g.: given $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{n}}$ are even \# satisfiable?
- poly-time OTM solves with SAT oracle

Oracle Turing Machines

Shorthand \#2:

- using complexity classes as oracles:
- OTM M
- complexity class C
$-M^{C}$ decides language L if for some language
$\mathrm{A} \in \mathrm{C}, \mathrm{M}^{\mathrm{A}}$ decides L
Both together: $\mathrm{C}^{\mathrm{D}}=$ languages decided by OTM "in" C with oracle language from D exercise: show $\mathbf{P}^{S A T}=\mathbf{P}^{\mathbf{N}}$

Oracle Turing Machines

- Oracle Turing Machine (OTM):
- multitape TM M with special "query" tape
- special states $q_{?}, q_{\text {yes }}, q_{\text {no }}$
- on input x, with oracle language A
$-\mathrm{M}^{\mathrm{A}}$ runs as usual, except...
- when M^{A} enters state $q_{?}$:
- $y=$ contents of query tape
- $y \in A \Rightarrow$ transition to $q_{y e s}$
- $y \notin A \Rightarrow$ transition to $q_{n o}$

Oracle Turing Machines

Shorthand \#1:

- applying oracles to entire complexity classes:
- complexity class C
- language A
$\mathbf{C l}^{\mathrm{A}}=\{\mathrm{L}$ decided by OTM M with oracle A with M "in" C $\}$
- example: PSAT $^{\text {SAT }}$

The Polynomial-Time Hierarchy

- can define lots of complexity classes using oracles
- the following classes stand out
- they have natural complete problems
- they have a natural interpretation in terms of alternating quantifiers
- they help us state certain consequences and containments (more later)

The Polynomial-Time Hierarchy

$\Sigma_{0}=\Pi_{0}=P$		
$\Delta_{1}=P^{P}$	$\Sigma_{1}=N P$	$\Pi_{1}=c o N P$
$\Delta_{2}=P^{N P}$	$\Sigma_{2}=N P^{N P}$	$\Pi_{2}=c o N P^{N P}$
$\Delta_{i+1}=P^{\Sigma_{i}}$	$\Sigma_{i+i}=N P^{\Sigma_{i}}$	$\Pi_{i+1}=c o N P^{\Sigma_{i}}$

Polynomial Hierarchy PH $=\cup_{i} \boldsymbol{\Sigma}_{\mathrm{i}}$

The Polynomial-Time Hierarchy

$$
\begin{array}{cc}
\Sigma_{0}=\Pi_{0}=P \\
\Delta_{i+1}=P^{\Sigma_{i}} & \Sigma_{i+i}=N P^{\Sigma_{i}} \quad \Pi_{i+1}=\operatorname{coN} P^{\Sigma_{i}}
\end{array}
$$

- Example:
- MIN CIRCUIT: given Boolean circuit C, integer k ; is there a circuit C ' of size at most k that computes the same function C does?
- MIN CIRCUIT $\in \boldsymbol{\Sigma}_{2}$

[^0]: May 4, 2004

