CS151
Complexity Theory

Lecture 11
May 4, 2004

Outline

e Extractors
* Trevisan’s extractor

* RL and undirected STCONN

May 4, 2004 CS151 Lecture 11

Extractors

* PRGs: can remove randomness from
algorithms

— based on unproven assumption
— polynomial slow-down
—not applicable in other settings
* Question: can we use “real” randomness?
— physical source
— imperfect — biased, correlated

May 4, 2004 CS151 Lecture 11

Extractors

* “Hardware” side
—what physical source?
— ask the physicists...

» “Software” side

—what is the minimum we need from the
physical source?

May 4, 2004 CS151 Lecture 11

Extractors

» imperfect sources: E—
P . MGG oY
—“stuck bits”:

—“correlation™:

—“more insidious correlation™; | perfect squares

« there are specific ways to get
independent unbiased random bits from
specific imperfect physical sources

May 4, 2004 CS151 Lecture 11

Extractors

* want to assume we don’t know details of
physical source

» general model capturing all of these?
—yes: “min-entropy”

e universal procedure for all imperfect
sources?

—yes: “extractors”

May 4, 2004 CS151 Lecture 11

Min-entropy

¢ General model of physical source w/ k < n
bits of hidden randomness

string sampled uniformly ___~
from this set

o.4"
Definition: random variable X on {0,1}" has
min-entropy min, —log(Pr[X = x])

— min-entropy k implies no string has weight
more than 2%

May 4, 2004 CS151 Lecture 11

Extractor

 Extractor: universal procedure for
“purifying” imperfect source:

source string -
- {source sfring] {
1" m bits
t bits

— E is efficiently computable
— truly random seed as “catalyst”

May 4, 2004 CS151 Lecture 11 8

Extractor

“(k, €)-extractor” = for all X with min-entropy k:
— output fools all circuits C:
[Pr,[C(z) = 1] - Pr, , x[C(E(x, ¥)) = 1]l < €

—distributions E(X, U), U, “e-close” (L, dist <2g)

¢ Notice similarity to PRGs
— output of PRG fools all efficient tests
— output of extractor fools all tests

May 4, 2004 CS151 Lecture 11 9

Extractors

» Using extractors

— use output in place of randomness in any application
— alters probability of any outcome by at most €

* Main motivation:

— use output in place of randomness in algorithm
— how to get truly random seed?
— enumerate all seeds, take majority

May 4, 2004 CS151 Lecture 11 10

Extractors

source strin -
—isource stringl g

o m bits
t bits
¢ Goals: good: best:
short seed O(log n) log n+0(1)
long output m = k&) m = k+t-0(1)
many k’s k = n2®) any k = k(n)
May 4, 2004 CS151 Lecture 11 1

Extractors

« random function for E achieves best !
— but we need explicit constructions
— usually complex + technical
— optimal extractors still open

* Trevisan Extractor:

—insight: use NW generator with source string
in place of hard function

— this works (!!)
— proof slightly different than NW, easier

May 4, 2004 CS151 Lecture 11 12

Trevisan Extractor

« Ingredients:
— error-correcting code
C:{0,1} - {0,1}"
distance (%2 - ¥am-)n" blocklength n’ = poly(n)
— (log n’, a = &log n/3) design:
S1.S,5,....S, 0{1...t = O(log n")}

E()=CMYjs o COYjs,)e---COYs,)

May 4, 2004

CS151 Lecture 11 13

Trevisan Extractor

E(X, Y)=C(X)Ys J*CX)Ys,l°---°CXYs,,]

C(x): | 010100101111101010111001010 |

seedy []

Theorem (T): E is an extractor for min-entropy
k = nd, with
— output length m = k173
— seed length t = O(log n)
—errore<1/m

May 4, 2004 CS151 Lecture 11

Trevisan Extractor

 Proof:
—assume X O {0,1}"

— assume fails to e-pass statistical test C
[Pr,[C(z) = 1] - Pryx ([C(E(x, y)) = 1]| > €
—distinguisher C = predictor P:
Priox f[P(E(X, ¥)1---i.0)=E(X, Y)] > Y2 + €/m
May 4, 2004

CS151 Lecture 11 15

Trevisan Extractor

* Proof (continued):
— for at least &/2 of x 0 X we have:
PrIP(E(X, Y)1--.1)=E(X, y)] > ¥ + €/(2m)
— fix bits w outside of S; to preserve advantage
Pr, [P(E(; Wy);.....1)=C(¥)[y]] >% + €/(2m)
—as varyy, for j # i, j-th bit of E(x; wy’) varies
over only 22values

— build up to (m-1) tables of 22 values to supply
E(G WY)1eeia

May 4, 2004 CS151 Lecture 11

Trevisan Extractor

- output
Y 0 {0,1}es N COALy' Tw.p.

3 +¢/(2m)

T

CS151 Lecture 11

May 4, 2004 17

Trevisan Extractor

* Proof (continued):

— (m-1) tables of size 22 constitute a
description of a string that has %2 + €/(2m)
agreement with C(x)

—# of x 0 X with such a description?
« exp((m-1)22) = exp(n®%3) = exp(k?3) strings
» Johnson Bound: each string accounts for at
most O(m*) x’s
« total #: O(m*)exp(k?/3) << 2k(e/2)
« contradiction

May 4, 2004 CS151 Lecture 11

Strong error reduction

« L OBPP ifthereis ap.p.t. TM M:
x O L = Pr[M(x,y) accepts] 2 2/3
x OL = Pr[M(xy) rejects] 2 2/3
* Want:
x 0L = Pr[M(x,y) accepts] 2 1 - 2
x 0L = Pr[M(xy) rejects] 2 1 - 2
* We saw: repeat O(k) times
—n = O(k)-ly] random bits; 2" bad strings

May 4, 2004 CS151 Lecture 11 19

Strong error reduction

 Better:
— E extractor for k = [y]®=n%, £<1/6

— pick random w [0 {0,1}", run M(x, E(w, z)) for
all z 0 {0,1}, take majority

— call w “bad” if maj,M(x, E(w, z)) incorrect
[Pr,[M(x,E(w,z))=b] - Pr,[M(x,y)=b]| = 1/6

— extractor property: at most 2kbad w

—n random bits; 2"° bad strings

May 4, 2004 CS151 Lecture 11 20

RL

« Recall: probabilistic Turing Machine
— deterministic TM with extra tape for “coin flips”
¢ RL (Random Logspace)
— L ORL if there is a probabilistic logspace TM M:
x O L = Pry[M(x,y) accepts] 2 %2
x 0L = Pry[M(x,y) rejects] = 1
— important detail #1: only allow one-way access to
coin-flip tape
— important detail #2: explicitly require to run in
polynomial time

May 4, 2004 CS151 Lecture 11 21

RL

« LORL ONL O TIME(log? n)
» Theorem (SZ) : RL O TIME(log®? n)

« Recall: STCONN is NL-complete.

e Undirected STCONN: given an
undirected graph G = (V, E), nodes s, t, is
there apaths - t

Theorem: USTCONN 0O RL

May 4, 2004 CS151 Lecture 11 22

Undirected STCONN

¢ Proof sketch: (in Papadimitriou)
— add self-loop to each vertex (technical reasons)

— start at s, take a random walk for 2|V||E| steps, accept
if see t

— Lemma: expected return time for any node i is 2|E|/d,

— suppose S=Vy, V,, ..., V,=tis a path

— expected time fromv; to v,,, is (d/2)(2|E|/d) = |E]|
— expected time to reach v, < |V||E|

— Pr[fail reach tin 2|V||E| steps] < ¥2

May 4, 2004 CS151 Lecture 11 23

A motivating question

» Central problem in logic synthesis:

« given Boolean circuit C, integer k /Dv\

« is there a circuit C’ of size at most 0 0

k that computes the same function | 7~ "~

C does? 0 O -
NNt

X; Xz X3 . Xy

Complexity of this problem?
— NP-hard? inNP? incoNP? in PSPACE?
— complete for any of these classes?

May 4, 2004 CS151 Lecture 11 24

Outline

¢ Oracle Turing Machines

The Polynomial-Time Hierarchy (PH)

Quantified SAT

Complete problems for classes in PH,
PSPACE

May 4, 2004 CS151 Lecture 11 25

Oracle Turing Machines

e Oracle Turing Machine (OTM):
— multitape TM M with special “query” tape
— special states g, Gyess Uno
—on input x, with oracle language A
— MA runs as usual, except...
—when MA enters state g
* y = contents of query tape
*y 0 A= transition to g
*y O A = transition to g,

May 4, 2004 CS151 Lecture 11 26

Oracle Turing Machines

« Nondeterministic OTM
— defined in the same way
— (transition relation, rather than function)

« oracle is like a subroutine, or function in
your favorite PL

— but each call counts as single step

e.g.. given @4, @,, ..., @, are even # satisfiable?
— poly-time OTM solves with SAT oracle

May 4, 2004 CS151 Lecture 11 27

Oracle Turing Machines

Shorthand #1:

« applying oracles to entire complexity
classes:
— complexity class C
—language A
CA ={L decided by OTM M with oracle A with M “in” C}

—example: PSAT

May 4, 2004 CS151 Lecture 11 28

Oracle Turing Machines

Shorthand #2:

¢ using complexity classes as oracles:
-0TMM
— complexity class C

— MC decides language L if for some language
A [0 C, MAdecides L

Both together: CP = languages decided by
OTM “in” C with oracle language from D

exercise: show PSAT = pNP

May 4, 2004 CS151 Lecture 11 29

The Polynomial-Time Hierarchy

« can define lots of complexity classes using
oracles

« the following classes stand out
—they have natural complete problems

—they have a natural interpretation in terms of
alternating quantifiers

—they help us state certain consequences and
containments (more later)

May 4, 2004 CS151 Lecture 11 30

The Polynomial-Time Hierarchy

£,=N,=P
A =PP Z,=NP M,=coNP
A,=P\? £,=NPNP M,=coNP\?
A, =P %,.=NP% N,,,=coNP*

Polynomial Hierarchy PH = [J; Z,

May 4, 2004 CS151 Lecture 11 31

The Polynomial-Time Hierarchy

I,=N,=P
A,,=P% X =NP% MN,,=coNP%
» Example:

— MIN CIRCUIT: given Boolean circuit C,
integer k; is there a circuit C’ of size at most k
that computes the same function C does?

—MIN CIRCUIT O Z,

May 4, 2004 CS151 Lecture 11 32

