
1

CS151
Complexity Theory

Lecture 11
May 4, 2004

May 4, 2004 CS151 Lecture 11 2

Outline

• Extractors

• Trevisan’s extractor

• RL and undirected STCONN

May 4, 2004 CS151 Lecture 11 3

Extractors

• PRGs: can remove randomness from 
algorithms
– based on unproven assumption

– polynomial slow-down
– not applicable in other settings

• Question: can we use “real” randomness?
– physical source
– imperfect – biased, correlated

May 4, 2004 CS151 Lecture 11 4

Extractors

• “Hardware” side 
– what physical source?

– ask the physicists…

• “Software” side
– what is the minimum we need from the 

physical source?

May 4, 2004 CS151 Lecture 11 5

Extractors

• imperfect sources:
– “stuck bits”:

– “correlation”:

– “more insidious correlation”:

• there are specific ways to get 
independent unbiased random bits from 
specific imperfect physical sources

������

� � � � � �

�������	
��
��


May 4, 2004 CS151 Lecture 11 6

Extractors

• want to assume we don’t know details of 
physical source

• general model capturing all of these? 
– yes: “min-entropy”

• universal procedure for all imperfect 
sources? 
– yes: “extractors”



2

May 4, 2004 CS151 Lecture 11 7

Min-entropy

• General model of physical source w/ k < n
bits of hidden randomness

Definition: random variable X on {0,1}n has 
min-entropy minx –log(Pr[X = x])

– min-entropy k implies no string has weight 
more than 2-k

������

�� 
�����

�����	

� ����	������� ��	
���� 	���
	
��

May 4, 2004 CS151 Lecture 11 8

Extractor

• Extractor: universal procedure for 
“purifying” imperfect source:

– E is efficiently computable
– truly random seed as “catalyst”


���


�����	
�����
��
���������

������

�� 
�����
 �

�����

� ���


May 4, 2004 CS151 Lecture 11 9

Extractor

“(k, � )-extractor” � for all X with min-entropy k:

– output fools all circuits C:

|Prz[C(z) = 1] - Pry, x←X[C(E(x, y)) = 1]| ���

– distributions E(X, Ut), Um “� -close” (L1 dist � 2 � )

• Notice similarity to PRGs
– output of PRG fools all efficient tests
– output of extractor fools all tests

May 4, 2004 CS151 Lecture 11 10

Extractors

• Using extractors
– use output in place of randomness in any application
– alters probability of any outcome by at most �

• Main motivation:
– use output in place of randomness in algorithm
– how to get truly random seed?
– enumerate all seeds, take majority 

May 4, 2004 CS151 Lecture 11 11

Extractors

• Goals: good: best:
short seed O(log n)  log n+O(1)
long output m = k

�
(1) m = k+t–O(1)

many k’s k = n
�

(1) any k = k(n)


���


�����	
�����
��
���������

������

�� 
�����
 �

�����

� ���


May 4, 2004 CS151 Lecture 11 12

Extractors

• random function for E achieves best !
– but we need explicit constructions
– usually complex + technical 
– optimal extractors still open

• Trevisan Extractor:
– insight: use NW generator with source string 

in place of hard function
– this works (!!)
– proof slightly different than NW, easier



3

May 4, 2004 CS151 Lecture 11 13

Trevisan Extractor

• Ingredients:
– error-correcting code

C:{0,1}n → {0,1}n’

distance (½ - ¼m-4)n’ blocklength n’ = poly(n)
– (log n’, a = � log n/3) design:               

S1,S2,…,Sm ⊂ {1…t = O(log n’)} 

E(x, y)=C(x)[y|S1
] � C(x)[y|S2

] � … � C(x)[y|Sm
]

May 4, 2004 CS151 Lecture 11 14

Trevisan Extractor

E(x, y)=C(x)[y|S1
]� C(x)[y|S2

]� … � C(x)[y|Sm
]

Theorem (T): E is an extractor for min-entropy      
k = n � , with 
– output length m = k1/3

– seed length t = O(log n)
– error ��� 1/m

��������������������������� !"#$


���	�

May 4, 2004 CS151 Lecture 11 15

Trevisan Extractor

• Proof: 
– assume X ⊆ {0,1}n

– assume fails to � -pass statistical test C 

|Prz[C(z) = 1] - Prx∈X, y[C(E(x, y)) = 1]| > �

– distinguisher C � predictor P:

Prx∈X, y[P(E(x, y)1…i-1)=E(x, y)i] > ½ + � /m

May 4, 2004 CS151 Lecture 11 16

Trevisan Extractor

• Proof (continued):
– for at least � /2 of x ∈ X we have:

Pry[P(E(x, y)1…i-1)=E(x, y)i] > ½ + � /(2m)

– fix bits w outside of Si to preserve advantage
Pry’[P(E(x; wy’)1…i-1)=C(x)[y’] ] >½ + � /(2m)

– as vary y’, for j � i, j-th bit of E(x; wy’) varies 
over only 2a values

– build up to (m-1) tables of 2a values to supply 
E(x; wy’)1…i-1

May 4, 2004 CS151 Lecture 11 17

Trevisan Extractor

%

������					
 !"#&�' (	) *�*	
+ ,	-.!�� #	

�'

/' ∈ ��������	�'

May 4, 2004 CS151 Lecture 11 18

Trevisan Extractor

• Proof (continued):
– (m-1) tables of size 2a constitute a 

description of a string that has ½ + � /(2m) 
agreement with C(x)

– # of x ∈ X with such a description?
• exp((m-1)2a)  = exp(n � 2/3) = exp(k2/3) strings
• Johnson Bound: each string accounts for at 

most O(m4) x’s
• total #: O(m4)exp(k2/3) << 2k( � /2)
• contradiction



4

May 4, 2004 CS151 Lecture 11 19

Strong error reduction 

• L ∈ BPP if there is a p.p.t. TM M: 
x ∈ L � Pry[M(x,y) accepts] � 2/3

x ∉ L � Pry[M(x,y) rejects] � 2/3

• Want: 
x ∈ L � Pry[M(x,y) accepts] � 1 - 2-k

x ∉ L � Pry[M(x,y) rejects] � 1 - 2-k

• We saw: repeat O(k) times
– n = O(k)·|y| random bits; 2n-k bad strings

May 4, 2004 CS151 Lecture 11 20

Strong error reduction

• Better: 
– E extractor for k = |y|3 = n � ,  � < 1/6

– pick random w ∈ {0,1}n, run M(x, E(w, z)) for 
all z ∈ {0,1}t, take majority

– call w “bad” if majzM(x, E(w, z)) incorrect
|Prz[M(x,E(w,z))=b] - Pry[M(x,y)=b]| � 1/6

– extractor property: at most 2k bad w

– n random bits; 2n� bad strings

May 4, 2004 CS151 Lecture 11 21

RL

• Recall: probabilistic Turing Machine
– deterministic TM with extra  tape for “coin flips”

• RL (Random Logspace)

– L ∈ RL if there is a probabilistic logspace TM M:
x ∈ L � Pry[M(x,y) accepts] � ½
x ∉ L � Pry[M(x,y) rejects] = 1

– important detail #1: only allow one-way access to 
coin-flip tape

– important detail #2: explicitly require to run in 
polynomial time

May 4, 2004 CS151 Lecture 11 22

RL

• L ⊆ RL ⊆ NL ⊆ TIME(log2 n)
• Theorem (SZ) : RL ⊆ TIME(log3/2 n)

• Recall: STCONN is NL-complete.
• Undirected STCONN: given an 

undirected graph G = (V, E), nodes s, t, is 
there a path s → t

Theorem: USTCONN ∈ RL

May 4, 2004 CS151 Lecture 11 23

Undirected STCONN
• Proof sketch: (in Papadimitriou)

– add self-loop to each vertex (technical reasons)
– start at s, take a random walk for 2|V||E| steps, accept 

if see t
– Lemma: expected return time for any node i is 2|E|/di

– suppose  s=v1, v2, …, vn=t is a path
– expected time from vi to vi+1 is (di/2)(2|E|/di) = |E|
– expected time to reach vn � |V||E|
– Pr[fail reach t in 2|V||E| steps] � ½

May 4, 2004 CS151 Lecture 11 24

A motivating question

• Central problem in logic synthesis:

• Complexity of this problem?
– NP-hard?   in NP?    in coNP?   in PSPACE?
– complete for any of these classes?

∨

∧

"� "�

∧

∨ ¬

"0 1 "�

∧
• given Boolean circuit C, integer k

• is there a circuit C’ of size at most 
k that computes the same function 
C does?



5

May 4, 2004 CS151 Lecture 11 25

Outline

• Oracle Turing Machines

• The Polynomial-Time Hierarchy (PH)

• Quantified SAT

• Complete problems for classes in PH, 
PSPACE

May 4, 2004 CS151 Lecture 11 26

Oracle Turing Machines

• Oracle Turing Machine (OTM):
– multitape TM M with special “query” tape
– special states q?, qyes, qno

– on input x, with oracle language A
– MA runs as usual, except…
– when MA enters state q?:

• y = contents of query tape
• y ∈ A � transition to qyes

• y ∉ A � transition to qno

May 4, 2004 CS151 Lecture 11 27

Oracle Turing Machines

• Nondeterministic OTM 
– defined in the same way

– (transition relation, rather than function)

• oracle is like a subroutine, or function in 
your favorite PL 
– but each call counts as single step

e.g.:  given � 1, � 2, …, � n are even # satisfiable?
– poly-time OTM solves with SAT oracle

May 4, 2004 CS151 Lecture 11 28

Oracle Turing Machines

Shorthand #1: 
• applying oracles to entire complexity 

classes:
– complexity class C
– language A
CA = {L decided by OTM M with oracle A with M “in” C}

– example: PSAT

May 4, 2004 CS151 Lecture 11 29

Oracle Turing Machines

Shorthand #2:
• using complexity classes as oracles:

– OTM M
– complexity class C
– MC decides language L if for some language 

A ∈ C, MA decides L

Both together: CD = languages decided by 
OTM “in” C with oracle language from D

exercise: show PSAT = PNP

May 4, 2004 CS151 Lecture 11 30

The Polynomial-Time Hierarchy

• can define lots of complexity classes using 
oracles

• the following classes stand out
– they have natural complete problems

– they have a natural interpretation in terms of 
alternating quantifiers

– they help us state certain consequences and 
containments (more later)



6

May 4, 2004 CS151 Lecture 11 31

The Polynomial-Time Hierarchy
�

0 = � 0 = P

�
1=PP

�
1=NP � 1=coNP

�
2=PNP

�
2=NPNP � 2=coNPNP

�
i+1=P� i

�
i+i=NP� i � i+1=coNP� i

Polynomial Hierarchy PH = ∪∪∪∪i

�
i

May 4, 2004 CS151 Lecture 11 32

The Polynomial-Time Hierarchy
�

0 = � 0 = P�
i+1=P� i

�
i+i=NP� i � i+1=coNP� i

• Example:
– MIN CIRCUIT: given Boolean circuit C, 

integer k; is there a circuit C’ of size at most k 
that computes the same function C does?

– MIN CIRCUIT ∈ � 2


