
1

CS151
Complexity Theory

Lecture 10
April 29, 2004

April 29, 2004 CS151 Lecture 10 2

Outline

• Decoding Reed-Muller codes

• Transforming worst-case hardness into
average-case hardness

• Extractors

April 29, 2004 CS151 Lecture 10 3

Decoding RM

• Main idea: reduce to decoding RS

�����
�

�

RM codeword p(x1, x2, …, xt)
of total degree at most h:

“restriction to line L(z) passing though a, b”

L1(z) = a1z + b1(1-z)

L2(z) = a2z + b2(1-z)
…

Lt(z) = atz + bt(1-z)
p|L(z) =

p(L1(z), L2(z), …, Lt(z))

April 29, 2004 CS151 Lecture 10 4

Decoding RM

Two key observations:

1. If p has total degree at most h, then p|L

has degree at most h

2. p|L is a univariate polynomial

�����

�

�

April 29, 2004 CS151 Lecture 10 5

Decoding RM

• Example:
– p(x1, x2) = x1

2x2 + x2
2

– L1(z) = 2z + 1(1-z) = z + 1

– L2(z) = 1z + 0(1-z) = z
– p|L(z) = (z+1)2z + z2 = 2z3 + 2z2 + z

�����

�����	
���

������
��

April 29, 2004 CS151 Lecture 10 6

Decoding RM

Key property:
• If pick a, b randomly in (Fq)t then points in

the vector
(az + b(1-z)) z ∈ Fq

are pairwise independent.

�����

�

�

2

April 29, 2004 CS151 Lecture 10 7

Decoding RM

• Meaning of pairwise independent in this
context:

• L = az + b(1-z)

for all w, z ∈ Fq, α, β ∈ (Fq)t

Pra,b[L(w) = α | L(z) = β] = 1/qt

• every pair of points on L behaves just as if
it was picked independently

April 29, 2004 CS151 Lecture 10 8

Decoding RM (small error)

• The setup:
– Codeword is a polynomial p:(Fq)t → Fq with

total degree h
• k = (h + t choose t)
• n = qt

– Given received word R:(Fq)t → Fq

– Suppose Pra[p(a) = R(a)] > 1 –
�

– Try to recover p by accessing R

�����

April 29, 2004 CS151 Lecture 10 9

Decoding RM (small error)

• To decode one position a ∈ (Fq)t :
– pick b randomly in (Fq)t

– L is line passing through a, b
– q pairs (z, R|L(z)) for z ∈ Fq

– each point L(z) random in (Fq)t

– E[# errors hit] <
�
q

– Prb[# errors hit > 4
�
q] < ¼ (Markov)

– try to find degree h univariate poly. r for which
Prz[r(z) � R|L(z)] � 4

�

RS
decoding!

April 29, 2004 CS151 Lecture 10 10

Decoding RM (small error)

– with probability 3/4 data is close to the
univariate polynomial p|L, and then

r(1) = p|L(1) = p(a)

– output r(1)
– repeat O(log n) times, choose top vote-getter

– reduces error probability to 1/3n

• union bound: all n positions decoded correctly
with probability at least 2/3

April 29, 2004 CS151 Lecture 10 11

Decoding RM (small error)

• Assume relative distance 1-h/q > ½

• Previous algorithm works when 4� < 1/4

• requires very small relative error � < 1/16

April 29, 2004 CS151 Lecture 10 12

List-decoding RM (large error)

• The setup:
– Given received word R:(Fq)t → Fq

– each nearby codeword is a polynomial
p:(Fq)t → Fq with total degree h.

• k = (h + t choose t)
• n = qt

– By accessing R, try to recover all p such that
Pra[p(a) = R(a)] > ε

�����

3

April 29, 2004 CS151 Lecture 10 13

List-decoding RM (large error)

• Procedure (sketch):
– pick a and b randomly in (Fq)t

– L is line passing through a, b

– q pairs (z, R|L(z)) for z ∈ Fq

– each point L(z) random in (Fq)t

– E[# non-errors hit] > εq
– Pra,b[# non-errors hit < εq/2] < 4/(εq)

(Chebyshev)

April 29, 2004 CS151 Lecture 10 14

List-decoding RM (large error)

– using RS list-decoding, find list of all degree h
univariate polynomials r1,r2,…,rm for which

Prz[ri(z) = R|L(z)] � εq/2
– One ri is p|L (i.e., ri(z) = p|L(z)) for all z)
– How can we find that one?

– given p(b), can find it with high probability:

Pra,b[exists i≠j for which rj(0) = ri(0)] < 8m2h/q
– find the unique ri for which ri(0) = p(b);

output ri(1), which should be p|L(1) = p(a)

April 29, 2004 CS151 Lecture 10 15

List-decoding RM (large error)

– Pra,b[# non-errors hit < εq/2] < 4/(εq)
– given p(b), Pra,b[fail to output p(a)] < 8m2h/q

– Pra,b[output p(a)] > 1 – 4/(εq) - 8m2h/q

– Key: try for O(log n) random b values
• for each b, try all q values for p(b) (one is right!)
• apply RM decoding from small error
• each good trial gives small error required for

previous decoding algorithm

April 29, 2004 CS151 Lecture 10 16

Decoding RM (large error)

• Requirements on parameters:
– εq/2 > (2hq)1/2 � q > 8h/ε2

(for RS list decoding)

– 4/(εq) < 1/64 � q > 256/ε
– know m < 2/ε from q-ary Johnson bound

– 8m2h/q < 32h/(qε2) < 1/64 � q > 211h/ε2

conclude: Pra,b[output p(a)] > 1 – 1/32

April 29, 2004 CS151 Lecture 10 17

Decoding RM (large error)

Pra,b[fail to output p(a)] < 1/32
Prb[Pra[fail to output p(a)] > 1/16] < ½

• on trial with correct value for p(b), with
probability at least ½ RM decoder from
small error is correct on all a

• repetition decreases error exponentially
• union bound: all p with agreement ε

included in list
April 29, 2004 CS151 Lecture 10 18

Local decodability

• Amazing property of decoding method:

• Local decodability: each symbol of C(m)
decoded by looking at small number of
symbols in R

� � � �� � � �
� � �� � �

� � � �� � � ������ � �� � �

4

April 29, 2004 CS151 Lecture 10 19

Local decodability

• Local decodability: each symbol of C(m)
decoded by looking at small number of
symbols in R
– small decoding circuit D

– small circuit computing R
– implies small circuit computing C(m)

�
� �����

April 29, 2004 CS151 Lecture 10 20

Concatenation

• Problem: symbols of Fq rather than bits
• Solution: encode each symbol with binary

code
– our choice:

• RM with degree h � 1, field size 2
• # variables t = log q
• also called “Hadamard code”

– Schwartz-Zippel implies distance = ½

April 29, 2004 CS151 Lecture 10 21

Concatenation

• decoding:
– whenever would have accessed symbol i of

received word, decode binary code first, then
proceed

� � 	 �	 � � ������ � �� � �

� � � � � � � � ������������������

�� � � � � � � � � ������������

April 29, 2004 CS151 Lecture 10 22

The concatenated code

• outer code: RM with parameters
– field size q, degree h, dimension t
– # coefficients (h+t choose t) > k
– qt = poly(k)

• inner code: RM with parameters
– field size q’ = 2
– degree h’ = 1
– dimension t’ = log q

• block length n = qtq = poly(k)

April 29, 2004 CS151 Lecture 10 23

Codes and Hardness

• Recall our strategy:

truth table of f:{0,1}log k → {0,1}
(worst-case hard)

truth table of f ’:{0,1}log n → {0,1}
(average-case hard)

� � � �� � � ���

� � � �� � � ������ � �� � �

April 29, 2004 CS151 Lecture 10 24

Hardness amplification

Claim: f ∈ E � f ’ ∈ E
– f ∈ E � f computable by a TM running in time

2c(log k) = kc

– to write out truth table of f: time kkc

– to compute truth table of f ’: time poly(n, k)

– recall n = poly(k)

– f ’ computable by TM running in time
nc’ = 2c’(log n) � f ’ ∈ E

5

April 29, 2004 CS151 Lecture 10 25

Hardness amplification

• Need to prove: if f’ is s’-approximable by
circuit C, then f is computable by a size s
= poly(s’) circuit.

� � � �� � � �

� � � �� � � � � �� � �

� � � �� � � ��� � �� � �

��

���

“message”

“codeword”

“received word”

April 29, 2004 CS151 Lecture 10 26

Hardness amplification

• suppose f’ is s’-approximable by C
– Prx[C(x) = f ’(x)] � ½ + 1/s’

– at least s’/2 “inner” blocks have C, f ’
agreement ½ + 1/(2s’)

– Johnson Bound: at most O(s’2) inner
codewords with this agreement

– find by brute force search: time = O(q)
– pick random mesg. from list for each symbol

– get “outer” received word with agreement 1/s’3

April 29, 2004 CS151 Lecture 10 27

Hardness amplification

– “outer” received word with agreement ε = 1/s’3

– can only uniquely decode from agreement >
½ (since relative distance < 1)

– our agreement << ½

need to use list-decoding of RM for large error

April 29, 2004 CS151 Lecture 10 28

Setting parameters

• have to handle agreement ε = 1/s’3

• pick q, h, t:
– need q > Ω(h/ε2) for decoder to work
– need (h + t choose t) > k (note s’ < k)

– need qt = poly(k)

• h = s’

• t ≈ (log k)/(log s’)
• q = Ω(h/ε2) = Ω(s’3)

April 29, 2004 CS151 Lecture 10 29

List-decoding RM
• final result:

short list of
circuits

• size =
poly(q)poly(s’)
=poly(s’)

• one computes
f exactly!

• circuit for f of
size poly(s’)

��

� �����

��

� ��	��

��

� �����

��

�	

��

April 29, 2004 CS151 Lecture 10 30

Putting it all together

Theorem 1 (IW, STV): If E contains functions
that require size 2

�
(n) circuits, then E

contains 2
�

(n) -unapproximable functions.

• Theorem (NW): if E contains 2
�

(n)-unapp-
roximable functions then BPP = P.

Theorem 2 (IW): E requires exponential size
circuits � BPP = P.

6

April 29, 2004 CS151 Lecture 10 31

Putting it all together

• Proof of Theorem 1:
– let f = {fn} be such a function that requires size

s = 2
�
n circuits

– define f ’ = {fn’ } be just-described encoding of
(truth table of) f

– just showed: if f ’ is s’ = 2
�

’n-approximable,
then f is computable by size s = poly(s’) = 2

�
n

circuit.

– contradiction.

April 29, 2004 CS151 Lecture 10 32

Extractors

• PRGs: can remove randomness from
algorithms
– based on unproven assumption

– polynomial slow-down
– not applicable in other settings

• Question: can we use “real” randomness?
– physical source
– imperfect – biased, correlated

April 29, 2004 CS151 Lecture 10 33

Extractors

• “Hardware” side
– what physical source?

– ask the physicists…

• “Software” side
– what is the minimum we need from the

physical source?

April 29, 2004 CS151 Lecture 10 34

Extractors

• imperfect sources:
– “stuck bits”:

– “correlation”:

– “more insidious correlation”:

• there are specific ways to get
independent unbiased random bits from
specific imperfect physical sources

������

� � � � � �

 !"�!#��$�%�"!$

April 29, 2004 CS151 Lecture 10 35

Extractors

• want to assume we don’t know details of
physical source

• general model capturing all of these?
– yes: “min-entropy”

• universal procedure for all imperfect
sources?
– yes: “extractors”

