

Outline

- Decoding Reed-Muller codes
- Transforming worst-case hardness into average-case hardness
- Extractors

April 29, 2004

Decoding RM

- Main idea: reduce to decoding RS

RM codeword $p\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ of total degree at most h :

$$
L_{1}(z)=a_{1} z+b_{1}(1-z)
$$ $L_{2}(z)=a_{2} z+b_{2}(1-z)$

 b

$L_{1}(z)=a_{t} z+b_{t}(1-z)$
"restriction to line $L(z)$ passing though a, b "

Decoding RM

- Example:

$-L_{1}(z)=2 z+1(1-z)=z+1$
$-L_{2}(z)=1 z+0(1-z)=z$
$-p_{\mid L}(z)=(z+1)^{2} z+z^{2}=2 z^{3}+2 z^{2}+z$

Decoding RM

Key property:

- If pick a, b randomly in $\left(F_{q}\right)^{t}$ then points in the vector

$$
(a z+b(1-z))_{z \in F_{q}}
$$

are pairwise independent.

April 29, 2004
CS151 Lecture 10

Decoding RM

- Meaning of pairwise independent in this context:
- $L=a z+b(1-z)$
for all $w, z \in F_{q}, \alpha, \beta \in\left(F_{q}\right)^{t}$
$\operatorname{Pr}_{\mathrm{a}, \mathrm{b}}[\mathrm{L}(\mathrm{w})=\alpha \mid \mathrm{L}(\mathrm{z})=\beta]=1 / q^{\mathrm{t}}$
- every pair of points on L behaves just as if it was picked independently

April 29, 2004
CS151 Lecture 10

Decoding RM (small error)

- To decode one position $a \in\left(F_{q}\right)^{t}$:
- pick b randomly in $\left(F_{q}\right)^{t}$
$-L$ is line passing through a, b
- q pairs ($z, R_{L L}(z)$) for $z \in F_{q}$
- each point $L(z)$ random in $\left(F_{q}\right)^{t}$

) | RS |
| :---: |
| decoding! |

- Pr $_{b}[\#$ errors hit > $4 \delta q]<1 / 4$ (Markov)
- try to find degree h univariate poly. r for which $\operatorname{Pr}_{z}\left[r(z) \neq R_{\mid L}(z)\right] \leq 4 \delta$

April 29, 2004
CS151 Lecture 10

Decoding RM (small error)

- The setup:
- Codeword is a polynomial p: $\left(\mathbf{F}_{\mathrm{q}}\right)^{\mathrm{t}} \rightarrow \mathbf{F}_{\mathrm{q}}$ with total degree h
- $\mathrm{k}=(\mathrm{h}+\mathrm{t}$ choose t$)$
- $n=q^{\text {t }}$
- Given received word R: $\left(\mathbf{F}_{\mathrm{q}}\right)^{\dagger} \rightarrow \mathbf{F}_{\mathrm{q}} \quad\left(\mathbf{F}_{\mathrm{q}}\right)^{\dagger}$
- Suppose $\operatorname{Pr}_{\mathrm{a}}[\mathrm{p}(\mathrm{a})=\mathrm{R}(\mathrm{a})]>1-\delta$
- Try to recover p by accessing R

April 29, 2004
CS151 Lecture 10
8

Decoding RM (small error)

- with probability $3 / 4$ data is close to the univariate polynomial p_{L}, and then

$$
r(1)=p_{L L}(1)=p(a)
$$

- output $r(1)$
- repeat O(logn) times, choose top vote-getter
- reduces error probability to $1 / 3 n$
- union bound: all n positions decoded correctly with probability at least $2 / 3$

April 29, 2004

List-decoding RM (large error)

- The setup:
- Given received word $R:\left(F_{q}\right)^{t} \rightarrow F_{q}$
- each nearby codeword is a polynomial $\mathrm{p}:\left(\mathbf{F}_{\mathrm{q}}\right)^{\dagger} \rightarrow \mathrm{F}_{\mathrm{q}}$ with total degree h .
- $\mathrm{k}=(\mathrm{h}+\mathrm{t}$ choose t)
- $n=q^{t}$
$\left(F_{q}\right)^{+}$
- By accessing R, try to recover all p such that $\operatorname{Pr}_{\mathrm{a}}[\mathrm{p}(\mathrm{a})=\mathrm{R}(\mathrm{a})]>\varepsilon$

List-decoding RM (large error)

- Procedure (sketch):
- pick a and b randomly in $\left(F_{q}\right)^{t}$
$-L$ is line passing through a, b
- q pairs ($z, R_{L L}(z)$) for $z \in F_{q}$
- each point $L(z)$ random in $\left(F_{q}\right)^{t}$
- E[\# non-errors hit] > عq
- $\operatorname{Pr}_{\text {a,b }}$ [\# non-errors hit $<\varepsilon q / 2$] < 4/(eq) (Chebyshev)
April 29, 2004

List-decoding RM (large error)

- $\operatorname{Pr}_{\mathrm{a}, \mathrm{b}}$ [\# non-errors hit $<\varepsilon q / 2$] < $4 /(\varepsilon q)$
- given $\mathrm{p}(\mathrm{b}), \mathrm{Pr}_{\mathrm{a}, \mathrm{b}}[$ fail to output $\mathrm{p}(\mathrm{a})]<8 \mathrm{~m}^{2} \mathrm{~h} / \mathrm{q}$
$-\operatorname{Pr}_{a, b}[$ output $p(a)]>1-4 /(\varepsilon q)-8 m^{2} h / q$
- Key: try for $\mathrm{O}(\log n)$ random b values
- for each b, try all q values for $p(b)$ (one is right!)
- apply RM decoding from small error
- each good trial gives small error required for previous decoding algorithm

April 29, 2004
CS151 Lecture 10

Decoding RM (large error)

$\operatorname{Pr}_{\text {a, }, \text { [fail to output } p(a)]}<1 / 32$
$\operatorname{Pr}_{b}\left[\mathrm{Pr}_{\mathrm{a}}[\right.$ fail to output $\left.\mathrm{p}(\mathrm{a})]>1 / 16\right]<1 / 2$

- on trial with correct value for $p(b)$, with probability at least $1 / 2$ RM decoder from small error is correct on all a
- repetition decreases error exponentially
- union bound: all p with agreement ε included in list

List-decoding RM (large error)

- using RS list-decoding, find list of all degree h univariate polynomials $r_{1}, r_{2}, \ldots, r_{m}$ for which

$$
\operatorname{Pr}_{z}\left[r_{i}(z)=R_{\mid L}(z)\right] \geq \varepsilon q / 2
$$

- One r_{i} is $p_{\mid L}\left(i . e ., r_{i}(z)=p_{\mid L}(z)\right)$ for all $\left.z\right)$
- How can we find that one?
- given $p(b)$, can find it with high probability:
$\operatorname{Pr}_{\mathrm{a}, \mathrm{b}}\left[\right.$ exists $i \neq j$ for which $\left.\mathrm{r}_{\mathrm{j}}(0)=\mathrm{r}_{\mathrm{i}}(0)\right]<8 \mathrm{~m}^{2 h} / \mathrm{q}$
- find the unique r_{i} for which $r_{i}(0)=p(b)$;
output $r_{i}(1)$, which should be $p_{\text {LL }}(1)=p(a)$
April 29, 2004
CS151 Lecture 10
14

Decoding RM (large error)

- Requirements on parameters:
$-\varepsilon q / 2>(2 h q)^{1 / 2} \Rightarrow q>8 h / \varepsilon^{2}$
(for RS list decoding)
$-4 /($ (q) $<1 / 64 \Rightarrow q>256 / \varepsilon$
- know $m<2 / \varepsilon$ from q-ary Johnson bound
$-8 \mathrm{~m}^{2} \mathrm{~h} / \mathrm{q}<32 \mathrm{~h} /\left(\mathrm{q} \varepsilon^{2}\right)<1 / 64 \Rightarrow \mathrm{q}>2^{11} \mathrm{~h} / \varepsilon^{2}$
conclude: $\operatorname{Pr}_{\mathrm{a}, \mathrm{b}}[$ output $\mathrm{p}(\mathrm{a})]>1-1 / 32$

April 29, 2004
CS151 Lecture 10
16

Local decodability

- Amazing property of decoding method:

- Local decodability: each symbol of C(m) decoded by looking at small number of symbols in R

April 29, 2004
CS151 Lecture 10
18

Local decodability

- Local decodability: each symbol of $C(m)$ decoded by looking at small number of symbols in R
- small decoding circuit D
- small circuit computing R
- implies small circuit computing C(m)

Concatenation

- Problem: symbols of \mathbf{F}_{q} rather than bits
- Solution: encode each symbol with binary code
- our choice:
- RM with degree $h \leq 1$, field size 2
- \# variables $t=\log q$
- also called "Hadamard code"
- Schwartz-Zippel implies distance $=1 / 2$

April 29, $2004 \quad$ CS151 Lecture 10
20

Concatenation

$C(m):$| 5 | 2 | 7 | 1 | 2 | 9 | 0 | 3 | 6 | 8 | 3 | 6 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$C^{\prime}(m): \cdots$| | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$R^{\prime}:$	\cdots	0	0	0	1	1	0	0	0	\cdots

- decoding:
- whenever would have accessed symbol i of received word, decode binary code first, then proceed

$$
\text { April 29, } 2004 \quad \text { CS151 Lecture } 10 \quad 21
$$

Codes and Hardness

- Recall our strategy:
truth table of $\mathrm{f}:\{0,1\}^{\log \mathrm{k}} \rightarrow\{0,1\}$
(worst-case hard)

$\mathrm{m}:$| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

truth table of $f^{\prime}:\{0,1\}^{\log n} \rightarrow\{0,1\}$
(average-case hard)

$C(m):$| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hardness amplification

Claim: $f \in E \Rightarrow f^{\prime} \in E$
$-f \in E \Rightarrow f$ computable by a TM running in time $2^{c(\log k)}=k^{c}$

- to write out truth table of f : time kk^{c}
- to compute truth table of f ': time poly (n, k)
- recall $\mathrm{n}=$ poly(k)
$-f$ ' computable by TM running in time

$$
n^{c^{\prime}}=2^{c^{\prime}(\log n)} \Rightarrow f^{\prime} \in \mathbf{E}
$$

April 29, 2004
CS151 Lecture 10
24

Hardness amplification

- Need to prove: if f' is s'-approximable by circuit C, then f is computable by a size s $=\operatorname{poly}\left(s^{\prime}\right)$ circuit.

$\mathrm{f}:$| 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $0 \quad$ "message"

$\mathrm{f}^{\prime}:$| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\(| \begin{array}{ll}0 \&

"codeword"\end{array}\)

C: | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$| \begin{array}{ll}0 & \text { "received word" }\end{array}$

April 29, 2004

Hardness amplification

- suppose f^{\prime} is s'-approximable by C
$-\operatorname{Pr}_{\mathrm{x}}\left[\mathrm{C}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})\right] \geq 1 / 2+1 / \mathrm{s}^{\prime}$
- at least s '/2 "inner" blocks have C, f, agreement $1 / 2+1 /\left(2 s^{\prime}\right)$
- Johnson Bound: at most O(s'2) inner codewords with this agreement
- find by brute force search: time $=O(q)$
- pick random mesg. from list for each symbol
- get "outer" received word with agreement $1 / \mathrm{s}^{\prime 3}$

April 29, 2004 CS151 Lecture 10
26

Setting parameters

- have to handle agreement $\varepsilon=1 / \mathrm{s}^{\prime 3}$
- pick q, h, t:
- need $\mathrm{q}>\Omega\left(\mathrm{h} / \varepsilon^{2}\right)$ for decoder to work
- need $(\mathrm{h}+\mathrm{t}$ choose t$)>\mathrm{k} \quad\left(\right.$ note $\left.\mathrm{s}^{\prime}<\mathrm{k}\right)$
- need $\mathrm{q}^{\mathrm{t}}=$ poly(k)
- $\mathrm{h}=\mathrm{s}^{\prime}$
- $t \approx(\log k) /\left(\log s^{\prime}\right)$
- $\mathrm{q}=\Omega\left(\mathrm{h} / \varepsilon^{2}\right)=\Omega\left(\mathrm{s}^{\prime 3}\right)$

April 29, 2004 CS151 Lecture 10
28

Putting it all together

Theorem 1 (IW, STV): If E contains functions that require size $2^{\Omega(n)}$ circuits, then \mathbf{E} contains $2^{\Omega(n)}$-unapproximable functions.

- Theorem (NW): if E contains $2^{\Omega(n)}$-unapproximable functions then $\mathbf{B P P}=\mathbf{P}$.
Theorem 2 (IW): E requires exponential size circuits $\Rightarrow B P P=P$.

Putting it all together

- Proof of Theorem 1:
- let $\mathrm{f}=\left\{\mathrm{f}_{n}\right\}$ be such a function that requires size $\mathrm{s}=2^{\delta \mathrm{n}}$ circuits
- define $f^{\prime}=\left\{f_{n}{ }^{\prime}\right\}$ be just-described encoding of (truth table of) f
- just showed: if f ' is $s^{\prime}=2^{\delta^{\prime \prime} n}$-approximable, then f is computable by size $s=\operatorname{poly}\left(s^{\prime}\right)=2^{\delta n}$ circuit.
- contradiction.

Extractors

- "Hardware" side
- what physical source?
- ask the physicists...
- "Software" side
- what is the minimum we need from the physical source?

Extractors

- want to assume we don't know details of physical source
- general model capturing all of these?
- yes: "min-entropy"
- universal procedure for all imperfect sources?
- yes: "extractors"

Extractors

- PRGs: can remove randomness from algorithms
- based on unproven assumption
- polynomial slow-down
- not applicable in other settings
- Question: can we use "real" randomness?
- physical source
- imperfect - biased, correlated

April 29, 2004
CS151 Lecture 10

Extractors

- imperfect sources:
- "stuck bits":
- "correlation":

111111の18) (1)

- "more insidious correlation": perfect squares
- there are specific ways to get independent unbiased random bits from specific imperfect physical sources

April 29, 2004
CS151 Lecture 10
34

