CS151
Complexity Theory

Lecture 10
April 29, 2004

Outline

» Decoding Reed-Muller codes

 Transforming worst-case hardness into
average-case hardness

» Extractors

April 29, 2004 CS151 Lecture 10

Decoding RM

* Main idea: reduce to decoding RS
RM codeword p(X, Xp, .., X;)
of total degree at most h:

L,(2) = a,z + by(1-2) . ?v/
Ly(z) =a,z + by(1-z) | b (Fp'
p(2) =

P(L1(2), Ly(2), -, Li(2))

“restriction to line L(z) passing though a, b”

I.-.tl(z) = az + b(1-2)

April 29, 2004 CS151 Lecture 10

Decoding RM

Two key observations:

a
1
b ;’
] F)

1. If p has total degree at most h, then p,_
has degree at most h

2. po is a univariate polynomial

April 29, 2004 CS151 Lecture 10

Decoding RM

« Example:
= P(X1, Xp) = X¢2Xp + X)?

a=(21)— L
b= (1,0) >
L F

-Li(z=2z+1(1-z)=z+1
—-Ly(z2)=1z2+0(1-2) =z
—pu(2) = (z+1)?z2 +22=223+ 222 +

April 29, 2004 CS151 Lecture 10

Decoding RM

Key property:
« If pick a, b randomly in (F,)'then points in
the vector
(az + b(1-2)) , 4 Fq
are pairwise independent. -

a
1
b >’
S~ (F

April 29, 2004 CS151 Lecture 10

Decoding RM

« Meaning of pairwise independent in this
context:

e L=az+ b(1-2)
forallw, z O Fq, o,p0 (Fq)t
PrapllW) = o | L(z) = B] = /g
« every pair of points on L behaves just as if
it was picked independently

April 29, 2004 CS151 Lecture 10 7

Decoding RM (small error)

e The setup:
— Codeword is a polynomial p:(Fy)' — F,with
total degree h
e k= (h +tchoose t)
enN= ql

- Given received word R:(Fy)' - F,)
— Suppose Pr [p(a) =R(a)]>1-0
— Try to recover p by accessing R

April 29, 2004 CS151 Lecture 10 8

Decoding RM (small error)

* To decode one position a [(F,)':
— pick b randomly in (Fg)"
— L is line passing through a, b

—q pairs (z, Ry(2)) forz O Fy ™ Rs |
— each point L(z) random in (F)! decoding!
— E[# errors hit] < 8q -
— Pry[# errors hit > 48q] < % (Markov)

—try to find degree h univariate poly. r for which
Pr,[r(z) # R.(2)] < 45

April 29, 2004 CS151 Lecture 10 9

Decoding RM (small error)

— with probability 3/4 data is close to the
univariate polynomial P and then

r(1) = p(1) = p(a)
— output r(1)
—repeat O(log n) times, choose top vote-getter
—reduces error probability to 1/3n

* union bound: all n positions decoded correctly
with probability at least 2/3

April 29, 2004 CS151 Lecture 10 10

Decoding RM (small error)

« Assume relative distance 1-h/q > %
« Previous algorithm works when 48 < 1/4

« requires very small relative error & < 1/16

April 29, 2004 CS151 Lecture 10 11

List-decoding RM (large error)

e The setup:
- Given received word R:(Fy)' - F,
—each nearby codeword is a polynomial
p:(Fy)' - Fqwith total degree h.
e k= (h+tchoose t)

en=qt (Fq)f

— By accessing R, try to recover all p such that
Prap(a) =R(@)] > ¢

April 29, 2004 CS151 Lecture 10 12

List-decoding RM (large error)

¢ Procedure (sketch):
- pick a and b randomly in (F,)!
— L is line passing through a, b
—q pairs (z, Ry(2)) forz O Fy
— each point L(z) random in (Fy)*

— E[# non-errors hit] > eq

— Pr, x[# non-errors hit < £q/2] < 4/(eq)
(Chebyshev)

April 29, 2004 CS151 Lecture 10 13

List-decoding RM (large error)

—using RS list-decoding, find list of all degree h
univariate polynomials ry,r,,...,r,, for which

Pr,[r(z) = R.(2)] 2 eq/2
—One riis py_(i-e., 1(2) = p,(2)) for all 2)
— How can we find that one?
— given p(b), can find it with high probability:
Pr, plexists i#j for which r;(0) = r;(0)] < 8m2h/q
— find the unique r; for which r,(0) = p(b);
output ri(1), which should be p (1) = p(a)

April 29, 2004 CS151 Lecture 10 14

List-decoding RM (large error)

— Pr, p[# non-errors hit < £q/2] < 4/(eq)
—given p(b), Pr, [fail to output p(a)] < 8m2h/q
— Pr,p[output p(a)] > 1 — 4/(eq) - 8m?h/q

— Key: try for O(log n) random b values
« for each b, try all g values for p(b) (one is right!)
< apply RM decoding from small error

« each good trial gives small error required for
previous decoding algorithm

April 29, 2004 CS151 Lecture 10 15

Decoding RM (large error)

. Requirements on parameters:
—€g/2 > (2hg)2 = q > 8h/e?
(for RS list decoding)
—4/(eq) < 1/64 = q > 256/¢
—know m < 2/¢ from g-ary Johnson bound
—8m?2h/q < 32h/(qe?) < 1/64 = q > 2'1h/e?

conclude: Pr, y[output p(a)] > 1 — 1/32

April 29, 2004 CS151 Lecture 10 16

Decoding RM (large error)

Pr, p[fail to output p(a)] < 1/32
Pry[Pr,[fail to output p(a)] > 1/16] < %2

« on trial with correct value for p(b), with
probability at least 2 RM decoder from
small error is correct on all a

« repetition decreases error exponentially

« union bound: all p with agreement €
included in list

April 29, 2004 CS151 Lecture 10 17

Local decodability

» Amazing property of decoding method:
R: [o]o]1]o]1]o]1]o]o]o]1]0]0]

cmy?[2[2]2]2]?[1]?][2]?]]?]?]

 Local decodability: each symbol of C(m)
decoded by looking at small number of
symbols in R

April 29, 2004 CS151 Lecture 10 18

Local decodability

« Local decodability: each symbol of C(m)
decoded by looking at small number of
symbols in R
—small decoding circuit D
—small circuit computing R
— implies small circuit computing C(m)

April 29, 2004 CS151 Lecture 10 19

Concatenation

* Problem: symbols of F rather than bits
« Solution: encode each symbol with binary
code

—our choice:
* RM with degree h < 1, field size 2
* # variables t =log q
« also called “Hadamard code”

— Schwartz-Zippel implies distance = %

April 29, 2004 CS151 Lecture 10 20

Concatenation

cm){5/2]7]1]2]9]o[3]e[8[3]6]9]

cm): ---lo[1]ofo][1]o1]o0] ---

: ..ol [ofalo] - -

« decoding:
—whenever would have accessed symbol i of
received word, decode binary code first, then
proceed

April 29, 2004 CS151 Lecture 10 21

The concatenated code

» outer code: RM with parameters
— field size g, degree h, dimension t
— # coefficients (h+t choose t) > k

— ' = poly(k)

inner code: RM with parameters
—field size q' =2

—degreeh’ =1

—dimension t' =log q

* block length n = g'q = poly(k)

April 29, 2004 CS151 Lecture 10 22

Codes and Hardness

« Recall our strategy:
truth table of f:{0,1}'°¢k _, {0,1}
(worst-case hard)
m:[0][t[1]o]o]o[1]o]
truth table of f ':{0,1}'*¢" -, {0,1}
(average-case hard)

c(m):[0]1]1]oJoJo]1]o]o]o]o]1]0]

April 29, 2004 CS151 Lecture 10 23

Hardness amplification

Claim:fOE=f' OE

—f 0 E = f computable by a TM running in time
2c(log k) = ke

— to write out truth table of f: time kk°
—to compute truth table of f ": time poly(n, k)

—recall n = poly(k)
—f’ computable by TM running in time
nc¢'=2¢clogn — f'OE

April 29, 2004 CS151 Lecture 10 24

Hardness amplification

« Need to prove: if f' is s’-approximable by
circuit C, then f is computable by a size s
= poly(s’) circuit.

f: [o[1]1]o]oo]1]0] ‘message”
f: ‘0‘1‘ 1‘0‘0‘0‘ 1 ‘0‘0‘0‘0‘ 1 ‘0‘ “codeword”

¢ m nm Eﬂﬂﬂ m “received word”

April 29, 2004 CS151 Lecture 10 25

Hardness amplification

* suppose f'is s’-approximable by C
—PrJC(x) = f'(X)] 2 % + 1/’
— at least s’/2 “inner” blocks have C, f’
agreement ¥z + 1/(2s’)

—Johnson Bound: at most O(s'?) inner
codewords with this agreement

—find by brute force search: time = O(q)
— pick random mesg. from list for each symbol
— get “outer” received word with agreement 1/s'3

April 29, 2004 CS151 Lecture 10 26

Hardness amplification

— “outer” received word with agreement € = 1/s3

— can only uniquely decode from agreement >
¥ (since relative distance < 1)

—our agreement << %

need to use list-decoding of RM for large error

April 29, 2004 CS151 Lecture 10 27

Setting parameters

* have to handle agreement ¢ = 1/s™

e pick g, h, t:
—need q > Q(h/e?) for decoder to work
—need (h + t choose t) > k (note s’ < k)
—need q' = poly(k)

e h=g

e t=(log k)/(log s")
e q=Q(h/e?) = Q(s)

April 29, 2004 CS151 Lecture 10 28

List-decoding RM

final result:

short list of

circuits

e size =
poly(g)poly(s’)
=poly(s’)

e one computes
f exactly!

e circuit for f of

size poly(s’)

— (w),

= — (w?)

i —

— (wd);

April 29, 2004 CS151 Lecture 10 29

Putting it all together

Theorem 1 (1w, STV): If E contains functions
that require size 29" circuits, then E
contains 24" -unapproximable functions.

« Theorem (NW): if E contains 29M-unapp-
roximable functions then BPP = P.

Theorem 2 (IW): E requires exponential size
circuits = BPP = P.

April 29, 2004 CS151 Lecture 10 30

Putting it all together

¢ Proof of Theorem 1:

—let f = {f,} be such a function that requires size
s = 29" circuits

—define f’ = {f, } be just-described encoding of
(truth table of) f

— just showed: if f’ is s’ = 2%"-approximable,
then f is computable by size s = poly(s’) = 29"
circuit.

— contradiction.

April 29, 2004 CS151 Lecture 10 31

Extractors

* PRGs: can remove randomness from
algorithms
— based on unproven assumption
— polynomial slow-down
—not applicable in other settings

* Question: can we use “real” randomness?
— physical source
— imperfect — biased, correlated

April 29, 2004 CS151 Lecture 10 32

Extractors

* “Hardware” side
— what physical source?
— ask the physicists...

« “Software” side

—what is the minimum we need from the
physical source?

April 29, 2004 CS151 Lecture 10 33

Extractors

« imperfect sources:
— “stuck bits”:

MNSTa

—“correlation”:

— “more insidious correlation”: | perfect squares

« there are specific ways to get
independent unbiased random bits from
specific imperfect physical sources

April 29, 2004 CS151 Lecture 10 34

Extractors

« want to assume we don’t know details of
physical source

« general model capturing all of these?
—yes: “min-entropy”

e universal procedure for all imperfect
sources?

—yes: “extractors”

April 29, 2004 CS151 Lecture 10 35

