CS151 Complexity Theory

Lecture 1 March 30, 2004

Complexity Theory

Classify problems according to the **computational resources** required

- running time
- storage space
- parallelism
- randomness
- rounds of interaction, communication, others...

Attempt to answer: what is computationally feasible with limited resources?

March 30, 2004 CS151 Lecture 1 2

Complexity Theory

- Contrast with decidability: What is computable?
 - Answer: some things are not
- We care about resources!
 - leads to many more subtle questions
 - fundamental open problems

March 30, 2004 CS151 Lecture 1

The central questions

- Is finding a solution as easy as recognizing one?
- Is every sequential algorithm parallelizable?
 P = NC?
- Can every efficient algorithm be converted into one that uses a tiny amount of memory?
 P = L?
- Are there small Boolean circuits for all problems that require exponential running time?
 EXP

 P/poly?
- Can every randomized algorithm be converted into a deterministic algorithm one?

P = BPP?

March 30, 2004 CS151 Lecture 1

Central Questions

We *think* we know the answers to all of these questions ...

... **but** no one has been able to prove that even a small part of this "world-view" is correct.

If we're wrong on any one of these then computer science will change dramatically

March 30, 2004 CS151 Lecture 1 5

Introduction

- You already know about two complexity classes
 - **P** = the set of problems decidable in *polynomial time*
 - NP = the set of problems with witnesses that can be verified in polynomial time
 - ... and notion of NP-completeness
- Useful tool
- Deep mathematical problem: P = NP?

Course should be **both** useful and mathematically interesting

A question

• Given: multivariate degree r polynomial $f(x_1, x_2, ..., x_d)$

e.g.
$$f(x_1, x_2, x_3, x_4) = (x_1^4 - x_3)(x_1 + x_3^2 - 3x_2^5)(4x_1^3 - x_4^2)$$

- Question: is f identically zero?
- · Challenge: devise a deterministic polytime algorithm for this problem.

CS151 Lecture 1

A randomized algorithm

- **Given**: multivariate degree r poly. $f(x_1, x_2, ..., x_d)$
- Algorithm:
 - pick small number of random points
 - if f is zero on all of these points, answer "yes"
 - otherwise answer "no"

(low-degree non-zero polynomial evaluates to zero on only a small fraction of its domain)

· No deterministic algorithm known

CS151 Lecture 1

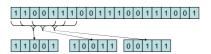
Derandomization

- Here is a deterministic algorithm that works under the assumption that there exist hard problems, say SAT.
- solve SAT on all inputs of length log n 1 1 0 0 1 1 1 0 0 1
- encode using error-correcting code (variant of a Reed-Muller code)

1 1 0 0 1 1 1 0 0 1 1 1 0 0 1

March 30, 2004 CS151 Lecture 1

Derandomization



- run randomized alg. using these strings in place of random evaluation points
 - if f is zero on all of these points, answer "yes"
 - otherwise answer "no"
- This works. (proof in this course)

March 30, 2004 CS151 Lecture 1

Derandomization

This technique works on any randomized algorithm.

Gives generic "derandomization" of randomized procedures.

CS151 Lecture 1 March 30, 2004

A surprising fact

- Is finding a solution as easy as recognizing one?

 P = NP? probably FA
 - probably FALSE
- Is every sequential algorithm parallelizable? probably FALSE P = NC?
- Can every efficient algorithm be converted into one that uses a tiny amount of memory?

P = L?probably FALSE

- Are there small Boolean circuits for all problems that require exponential running time? $EXP \subset P/poly$? probably FALSE
- Can every randomized algorithm be converted into a deterministic algorithm one?

P = BPP? probably TRUE

Outline

Should be mostly review...

- 1. Problems and Languages
- 2. Complexity Classes
- 3. Turing Machines
- 4. Reductions
- 5. Completeness

arch 30, 2004

CS151 Lecture 1

Problems and Languages

- Need formal notion of "computational problem". Examples:
 - Given graph G, vertices s, t, find the shortest path from s to t
 - Given matrices A and B, compute AB
 - Given an integer, find its prime factors
 - Given a Boolean formula, find a satisfying assignment

March 30, 2004 CS151 Lecture 1

Problems and Languages

One possibility: function from strings to strings

$$f: \sum^{*} \rightarrow \sum^{*}$$

• function problem:

given x, compute f(x)

decision problem: f:∑^{*} → {yes, no}

given x, accept or reject

March 30, 2004 CS151 Lecture 1

Problems and Languages

- simplification doesn't give up much:
 - Given an integer n, find its prime factors
 - Given an integer n and an integer k, is there a factor of n that is < k?
 - Given a Boolean formula, find a satisfying assignment
 - Given a Boolean formula, is it satisfiable?
- solve function problem using related decision problem (how?)
- · We will work mostly with decision problems

March 30, 2004 CS151 Lecture 1 16

Problems and Languages

- decision problems: f:∑^{*} → {yes, no}
- equivalent notion: language L ⊂ ∑*
 L = set of "yes" instances
- Examples:
 - set of strings encoding satisfiable formulas
 - set of strings that encode pairs (n,k) for which n has factor < k
- decision problem associated with L:
 - Given x, is x in L?

March 30, 2004 CS151 Lecture 1

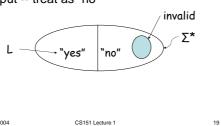
Problems and Languages

An aside: two encoding issues

- 1. implicitly assume we've agreed on a way to encode inputs (and outputs) as strings
 - sometimes relevant in fine-grained analysis (e.g. adj. matrix vs. adj. list for graphs)
 - almost never an issue in this class
 - avoid silly encodings: e.g. unary

Problems and Languages

2. some strings not valid encodings of any input -- treat as "no"



Complexity Classes

- complexity class = class of languages
- set-theoretic definition no reference to computation (!)
- · example:
 - TALLY = languages in which every yes instance has form 0ⁿ
 - $e.g. L = \{ 0^n : n \text{ prime } \}$

farch 30, 2004 CS151 Lecture 1 20

Complexity Classes

- · complexity classes you know:
 - P = the set of languages decidable in polynomial time
 - -NP = the set of languages L where

 $L = \{ \; x : \exists \; y, \; |y| \leq |x|^k, \; (x, \; y) \in \; R \; \}$

and R is a language in P

• easy to define complexity classes...

March 30, 2004 CS151 Lecture 1

21

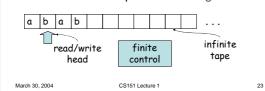
Complexity Classes

- ...harder to define meaningful complexity classes:
 - capture genuine computational phenomenon (e.g. parallelism)
 - contain natural and relevant problems
 - ideally characterized by natural problems (completeness – more soon)
 - robust under variations in model of computation
 - possibly closed under operations such as AND, OR, COMPLEMENT...

March 30, 2004 CS151 Lecture 1 22

Complexity Classes

- need a model of computation to define classes that capture important aspects of computation
- Our model of computation: Turing Machine



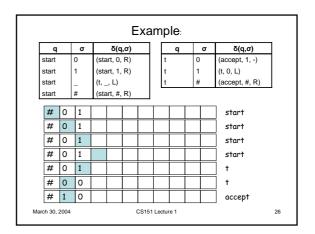
Turing Machines

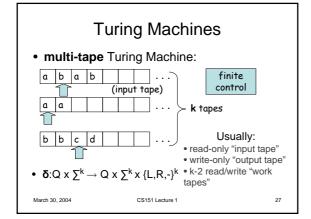
- · Q finite set of states
- ∑ alphabet including blank: "_"
- $\mathbf{q}_{\text{start}}$, $\mathbf{q}_{\text{accept}}$, $\mathbf{q}_{\text{reject}}$ in Q
- δ : Q x $\Sigma \rightarrow$ Q x Σ x {L, R, -} transition fn.
- input written on tape, head on 1st square, state q_{start}
- sequence of steps specified by δ
- if reach $\mathbf{q}_{\mathsf{accept}}$ or $\mathbf{q}_{\mathsf{reject}}$ halt

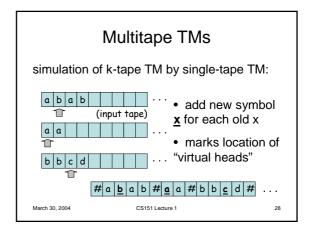
Turing Machines

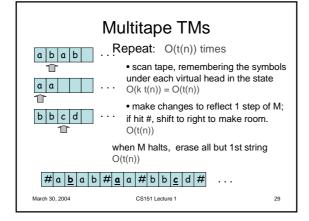
- three notions of computation with Turing machines. In all, input x written on tape...
 - function computation: output f(x) is left on the tape when TM halts
 - language decision: TM halts in state q_{accept} if $x \in L$; TM halts in state q_{reject} if $x \notin L$.
 - $\mbox{language acceptance: TM halts in state} \\ \mbox{q_{accept} if $x \in L$; may loop forever otherwise.} \\$

March 30, 2004 CS151 Lecture 1









Extended Church-Turing Thesis

• the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis everything we can compute in time t(n) on a physical computer can be computed on a Turing Machine in time $t^{O(1)}(n)$ (polynomial slowdown)

• quantum computers challenge this belief

Extended Church-Turing Thesis

- consequence of extended Church-Turing Thesis: all reasonable physically realizable models of computation can be efficiently simulated by a TM
- e.g. multi-tape vs. single tape TM
- e.g. RAM model

March 30, 2004 CS151 Lecture 1

Turing Machines

 Amazing fact: there exist (natural) undecidable problems

 $HALT = \{ (M, x) : M \text{ halts on input } x \}$

• Theorem: HALT is undecidable.

farch 30, 2004 CS151 Lecture 1 32

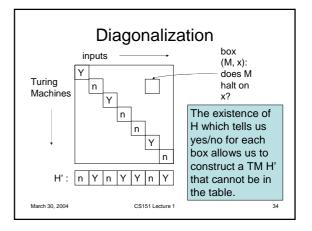
Turing Machines

- Proof:
 - Suppose TM H decides HALT
 - Define new TM H': on input M
 - if H accepts (M, M) then loop
 - if H rejects (M, M) then halt
 - Consider H' on input H':
 - if it halts, then H rejects (H', H'), which implies it cannot halt
 - if it loops, then H accepts (H', H') which implies it must halt

33

- contradiction.

March 30, 2004 CS151 Lecture 1



Turing Machines

- · Back to complexity classes:
 - **TIME(f(n))** = languages decidable by a multitape TM in at most f(n) steps, where n is the input length, and $f: N \to N$
 - SPACE(f(n)) = languages decidable by a multi-tape TM that touches at most f(n) squares of its work tapes, where n is the input length, and $f: N \to N$

Note:
$$P = \bigcup_{k >= 1} TIME(n^k)$$

March 30, 2004 CS151 Lecture 1

Interlude

- In an ideal world, given language L
 - state an algorithm deciding L
 - prove that no algorithm does better
- we are pretty good at part 1
- we are currently completely helpless when it comes to part 2, for most problems that we care about

Interlude

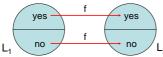
- in place of part 2 we can
 - relate the difficulty of problems to each other via reductions
 - prove that a problem is a "hardest" problem in a complexity class via completeness
- · powerful, successful surrogate for lower bounds

Reductions

- reductions are the main tool for relating problems to each other
- given two languages L₁ and L₂ we say "L₁ reduces to L_2 " and we write " $L_1 \le L_2$ " to
 - there exists an efficient (for now, poly-time) algorithm that computes a function f s.t.
 - $x \in L_1$ implies $f(x) \in L_2$
 - x ∉ L₁ implies f(x) ∉ L₂

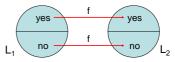
CS151 Lecture 1

Reductions



- positive use: given new problem L₁ reduce it to L2 that we know to be in P. Conclude \mathbf{L}_{1} in \mathbf{P} (how?)
 - e.g. bipartite matching ≤ max flow
 - formalizes "L₁ as easy as L₂"

March 30, 2004 CS151 Lecture 1 Reductions



- negative use: given new problem L2 reduce L_1 (that we believe not to be in P) to it. Conclude L2 not in P if L1 not in P (how?)
 - e.g. satisfiability ≤ graph 3-coloring
 - formalizes "L2 as hard as L1"

March 30, 2004 CS151 Lecture 1

Reductions

- Example reduction:
 - $-3SAT = { \varphi : \varphi \text{ is a 3-CNF Boolean formula } }$ that has a satisfying assignment }

(3-CNF = AND of OR of ≤ 3 literals)

 $- IS = { (G, k) | G \text{ is a graph with an} }$ independent set $V' \subset V$ of size $\geq k$ }

(ind. set = set of vertices no 2 of which are connected by an edge)

March 30, 2004 CS151 Lecture 1

Ind. Set is NP-complete

The reduction f: given

 $\phi = (x \vee y \vee \neg z) \wedge (\neg x \vee w \vee z) \wedge \dots \wedge (\dots)$ we produce graph G_ω:

- · one triangle for each of m clauses
- · edge between every pair of contradictory literals
- set k = m

Reductions

 $\phi = (x \vee y \vee \neg z) \wedge (\neg x \vee w \vee z) \wedge \dots \wedge (\dots)$

... \triangle

- Claim: φ has a satisfying assignment if and only if G has an independent set of size at least k
- Proof?
- Conclude that 3SAT ≤ IS.

March 30, 2004

CS151 Lecture 1

Completeness

- complexity class C
- language L is C-complete if
 - L is in C
 - every language in C reduces to L
- · very important concept
- formalizes "L is hardest problem in complexity class **C**"

March 30, 2004

CS151 Lecture 1

Completeness

- Completeness allows us to reason about the entire class by thinking about a single concrete problem
- related concept: language L is C-hard if
 every language in C reduces to L

March 30, 2004

CS151 Lecture 1

Completeness

- May ask: how to show every language in C reduces to L?
 - in practice, shown by reducing known Ccomplete problem to L
 - often not hard to find "1st" C-complete language

March 30, 2004

CS151 Lecture 1

Completeness

- Example:

NP = the set of languages L where L = { $x : \exists y, |y| \le |x|^k, (x, y) \in R }$

and R is a language in P.

one **NP**-complete language "bounded halting": BH = $\{ (M, x, 1^k) : \exists y \text{ s.t. } M \text{ accepts } (x, y) \text{ in at most } k \text{ steps } \}$

- challenge is to find **natural** complete problem
- Cook 71 : SAT NP-complete

March 30, 2004 CS151 Lecture 1

Summary

- problems
 - function, decision
 - language = set of strings
- complexity class = set of languages
- efficient computation identified with efficient computation on Turing Machine
 - single-tape, multi-tape
 - diagonalization technique: HALT undecidable
- TIME and SPACE classes
- · reductions
- $\bullet \ \ \textbf{C}\text{-completeness}, \ \ \textbf{C}\text{-hardness}$

March 30, 2004

47

CS151 Lecture 1