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Outline

• Background: genome evolution
• Graph and trees for sequence families
• Graph theoretical insights into multidomain

protein evolution



Genome sequence
– Coding and coding sequence

Non-coding sequence
- regulation, transposable 

elements...
All genes 

– Intron exon structure, splicing, 
third positions...

All amino acid sequences
– Gene products

Set of all proteins
– Structures

Foci of genome evolution



Evolution of the parts list

Unicellular 
eukaryotes 

Archaea

Bacteria

Fungi

Animals

Plants

How does the complement of protein coding sequences change over 
evolutionary time?  

How is this related to the emergence of novel cellular processes?  
New morphologies?  Species evolution?



Animal evolution and genome sizes

Worm Ciona

Amphioxus

Vertebrates
FlySlime 

mold
Sponge

20K – 25K15K15K19K8K-10K

Yeast

6K



Where do new genes come from?

• Gene duplication
• Domain shuffling



7

New genes arise through duplication and 
modification of existing genes

Adult                              Fetal                        Embryonic

Ancestral gene
atgccaggactcccagtga…

atgcgccgtctggcatgt…

β-globin
atgcaaggagtcccagagc…

γ-globin
atgcgaggtctcccatgt…

ε-globin

Duplication

Duplication



New genes arise through insertion,  
duplication and rearrangement of domains

Domains: 
Sequence fragments
Fold independently
Carry out specific functions 
Found in diverse contexts

Insulin receptor

FN3
RL kinaseFurin likeRL



Protein Tyrosine 
Kinases

Adapted from Robinson et al., 2000



Multidomain protein statistics

Archaea

Bacteria

Fungi

Animals

Plants

1.2%2.7%6.9%31.6%Fungi
1.1%3.8%8.0%35.3%Plants

1.7%5.6%11.1%39.3%Animals

0.2%1.1%3.4%23.3%Archaea
0.3%1.2%3.9%26.7%Bacteria
≥11≥6≥4≥2domains Tordai et al., 05



Multidomain Sequences

Insulin receptor

• Nature’s equivalent of rapid 
prototyping

• Expanded preferentially in 
– animals
– vertebrates

• Functional roles:
– Cell signaling
– Cell-cell adhesion
– Tissue repair
– Cell death
– Immune response

FN3
RL kinaseFurin likeRL



Questions about Multidomain Evolution

Insulin receptor

• Processes of domain acquisition 
and loss

• Rates of domain acquisition and 
loss

• Constraints on domain 
organization

• Evolutionary opportunities 
offered by domain shuffling

• Are domain insertions rare?
• Do domain architectures persist?

FN3
RL kinaseFurin likeRL



Questions about Multi-Domain Evolution
Insulin receptor

• Processes of domain acquisition 
and loss

• Rates of domain acquisition and 
loss

• Constraints on domain 
organization

• Evolutionary opportunities 
offered by domain shuffling

• Are domain insertions rare?
• Do domain architectures persist?

FN3
RL kinaseFurin likeRL



Outline

• Background: genome evolution
• Graph and trees for sequence families

– Sequence trees
– Sequence graphs 
– Domain graphs
– Domain trees

• Graph theoretical insights into multidomain
protein evolution



Gene tree reconstruction

Given contemporary sequences, find the tree that
– best explains the data
– under an appropriate sequence evolution model

HA2
’

FA1

MA1

HA2

FA2

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt…
…atgcgacgtcacgtattgg…
…atgtgtggtctggcagtga…
…atgcgacctctcggagaat…



Outline

• Background: genome evolution
• Graph and trees for sequence families

– Sequence trees
– Sequence graphs 
– Domain graphs
– Domain trees

• Graph theoretical insights into multidomain
protein evolution



Sequence Similarity Graph

…atgcaaggagtcccagagcctgagctgactacgt…
…atgcgaggtctcccagtgtctgaactgactaagt…

G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}

Assumption:
Sequences with significant 

sequence similarity share a 
common ancestor.



G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}

Sequence Similarity Graph



Sequence Similarity Graph

In an ideal world:
Gene families would be cliques

G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}



Sequence Similarity Graph

In the real world:
we see situations like this.

?

x

y

z

w

G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}



Sequence Similarity Graph

?

x

y

z

w

Hypothesis 1: x and z are related but no 
longer exhibit significant sequence similarity

G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}



Sequence Similarity Graph

x

y

z

w

Hypothesis 1: x and z are related but no 
longer exhibit significant sequence similarity

G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}



x: AB

Y : BC

z: CD

w: DA

Hypothesis 2:

A B

A D

B C

C D

Sequence Similarity Graph

G = (V,E), V = {all sequences},                           
E = {(u,v) |  u and v share significant similarity}



Outline

• Background: genome evolution
• Graph and trees for sequence families

– Sequence trees
– Sequence graphs 
– Domain graphs
– Domain trees

• Graph theoretical insights into multidomain
protein evolution



Protein Overlap Graph
G = (V,E), 
V = {all domain architectures}, 
E = {(u.v) |  u & v share a 

domain}

Domain Overlap Graph
G = (V,E), 
V = {all domains}, 
E = {(u.v) |  a protein that 

contains u & v }
E

ABC

BC

CD

AD

B C

A B C

A D

C D

D

A
B

C



Research on the domain graphs

• Graph properties
– Distribution of node degree, k

• Protein overlap graphs: a-k

• Domain overlap graphs: k-γ

– Clustering coefficient
• Evidence for evolutionary models

– Preferential attachment
– Birth, Death, Innovation

Wuchty, 01; Apic, Gough & Teichmann, 01; Wuchty & Almaas, 05; Karev et al., 02; 
Rzhetsky & Gomez, 01; Qian, Lacomb & Gerstein, 01



Outline

• Background: genome evolution
• Graph and trees for sequence families

– Sequence trees
– Sequence graphs 
– Domain graphs
– Domain trees

• Graph theoretical insights into multidomain
protein evolution



Adapted from Robinson et al., 2000

Problem:
•Cannot align multi-domain sequences

Solution:
•Only align one domain

But domains may not have the same history

Tree constructed from alignment of 
kinase domains only



Adapted from Robinson et al., 2000

Early insertion of Ig followed 
by loss?



Adapted from Robinson et al., 2000

Several independent late 
insertions?



Adapted from Robinson et al., 2000

Need tree models that captures sequence 
evolution and domain shuffling



An example of                  
multidomain family evolution

Duplication

Domain 
loss

Duplication

Duplication

Domain 
insertion Domain 

insertion

Domain 
insertion

3 duplications
3 domain insertions
1 domain loss



An alternate history

Domain 
insertion

Domain 
insertion

Duplication

Duplication

Duplication

3 duplications
4 domain insertions



Outline

• Background: genome evolution
• Graph and trees for sequence families
• Graph theoretical insights into multidomain

protein evolution
– Are domain insertions rare?
– Do domain architectures persist?

Przytycka, Davis, Song, Durand, JCB, 2006



Adapted from Robinson et al., 2000

Do domain combinations tend to persist?

Are domain insertions rare compared to domain 
deletions?

Note: kinase domain = a reference point for these events



Main Idea

– History of insertions and deletions is encoded in a tree, 
but trees are hard to reconstruct.
–Test assumptions domain overlap graph instead.

A B
A D

C D
B C



D

A
B

C

A B

A D

B C

C D

Main Idea

Domain Overlap Graph:  G = (V,E)
V = {all domains}, 
E = {(u.v) | a protein that contains u & v }E



D

A
B

C

A B

A D

B C

C D

Cycle in the Domain Overlap Graph (DOG)
Multiple domain insertions must have occurred

Main Idea



Definitions

• A protein is a set of domains
– Ignore domain order
– Ignore copy number 

• Events
– Domain “insertion” (includes unequal crossing over, 

retrotransposition, read-thru errors, etc.). 
– Domain loss. 
– Gene duplications are free. 

• Let D superfamily =  {all domain architectures 
containing domain D}.



An example of multidomain family evolution

Domain 
insertion

Duplication

Domain 
loss

Duplication

Duplication

Domain 
insertion Domain 

insertion

Domain 
insertion



Duplication

Domain 
loss

Duplication

Duplication

Domain 
insertion Domain 

insertion

Domain 
insertion

The blue domain superfamily:



Duplication

Domain 
loss

Duplication

Duplication

Domain 
insertion Domain 

insertion

Domain 
insertion

The red domain superfamily:



Our Approach

Introduce multidomain parsimony models
– Conservative Dollo Parsimony (CDP)

Insertions are rare

– Static Dollo Parsimony (SDP)

Domain architectures persist

• Map these models to Domain Overlap Graph (DOG)

– Show CDP ↔ chordality in DOG

– Show SDP ↔ cliques in DOG correspond to proteins 

– Adapt fast algorithms for testing these properties to DOGs.

• Apply test to all superfamilies in the SwissProt database



Maximum Parsimony

Character data: binary, multistate
Assumptions:

– Mutations are rare events
– The best hypothesis requires the fewest state changes 

to explain the data
– Additional constraints may be imposed.  

For a given data set, use model to 
– Construct a tree
– Test whether assumptions are violated.

Goal: adapt existing parsimony models to multidomain
evolution to test our hypotheses.



Perfect Phylogeny

Assumptions:
– Mutations are rare events
– Every binary character changes state (0→1) at most once.

 Characters 
Taxa Placenta Wings 
Duck 0 1 
Robin 0 1 
Whale 1 0 

Pig 1 0 
 

 

WhaleDuckRobin

wings

Pig

placenta

primitive state: 0,0

This data set satisfies the 
assumptions



Perfect Phylogeny

Assumptions:
– Mutations are rare events
– Every binary character changes state (0→1) at most once.

 Character Data 
Taxa Placenta Wings 
Duck 0 1 
Robin 0 1 

Bat 1 1 
Whale 1 0 

Pig 1 0 
 

 

This data set does not admit 
a perfect phylogeny

WhaleDuckRobin

wings

Pig

placenta

primitive state: 0,0



Multidomain Parsimony Model

• A protein is a set of domains
– Ignore domain order, copy number 

• Leaf nodes: proteins 
• Binary characters: domains

• If domain d is present in protein p, we say the state of
character d in protein p is 1.

• Events
– Domain insertion.  State(d): 0 → 1
– Domain loss. State(d): 1 → 0

• Goal: For each superfamily, S(D), does a parsimony 
tree exist for S(D)?



Example: multidomain character data

• Domains are characters

• Character state: 1 ↔ ‘Domain d is present in protein p.’

Some domain architectures from the kinase superfamily

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM

Sh2 kinaseSh3

Sh2 kinase Syk

Csk, Src

kinaseSh3 Ack

Ig kinaseIg Ig

Axl

Pdgfr

kinaseIg Ig Fn3 Fn3



Existing model: Perfect Phylogeny

Every binary character changes state (0→1) at most once.

Pdgfr Axl Syk Src Csk

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM

Insert SH3

Insert SH2
Insert TM

Insert Ig

Insert Fn3



Existing model: Perfect Phylogeny

Every binary character changes state (0→1) at most once.

Pdgfr Axl Syk Src Ack

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM

Insert SH3

Insert SH2
Insert TM

Insert Ig

Insert Fn3 Loss of SH2

Violation!



Existing model: Perfect Phylogeny

Every binary character changes state at most once.

Too restrictive!

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM

Pdgfr Axl Syk Src Ack

Insert SH3

Insert SH2
Insert TM

Insert Ig

Insert Fn3 Loss of SH2

Violation!



Existing model: Dollo Parsimony

Pdgfr Axl Syk Src Ack

Every binary character changes state 0 → 1 at most once,        
1 → 0 unrestricted

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM

Insert SH3

Insert SH2
Insert TM

Insert Ig

Insert Fn3 Loss of SH2

This tree satisfies Dollo parsimony



Existing model: Dollo Parsimony

Every binary character changes state 0 → 1 at most once,        
1 → 0 unrestricted

Problem: since losses are unrestricted, we can always construct a Dollo tree by 
starting with the complete set of domains

Pdgfr Axl Syk Src Ack

Loss of SH2

Loss of SH2 
& SH3

Loss of Fn3 Loss of SH3

Loss of Ig, Fn3, TM



Existing model: Dollo Parsimony

Every binary character changes state 0 → 1 at most once,        
1 → 0 unrestricted

Problem: since losses are unrestricted, we can always construct a Dollo tree by 
starting with the complete set of domains

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM
Not restrictive enough!

Pdgfr Axl Syk Src Ack

Loss of SH2

Loss of SH2 
& SH3

Loss of Fn3 Loss of SH3

Loss of Ig, Fn3, TM



Comparing Existing Parsimony Models

Perfect Phylogeny
• Too restrictive to model 

multidomain evolution

• Given n domains and m 
proteins, find PP in O(mn)

• If a PP exists, it is 
guaranteed to be optimal.

Dollo Parsimony
• Not restrictive enough

• Can always find a DP, but 
not biologically realistic

• Finding optimal DP is    
NP-complete.

Goal: Domain parsimony model that is informative and tractable.



Multidomain Parsimony Models

A Dollo phylogeny is static (SDP)
if for every ancestral protein, p, the set of domains in p is a 
subset of the domains in some leaf protein. 

Domains architectures persist

A Dollo phylogeny is conservative (CDP)
if  for every pair of domains in an ancestral protein, there 
exists some leaf protein that also contains this pair of 
domains.

Domain insertions are rare

Every Static Dollo phylogeny is also Conservative.



Static Dollo Parsimony

This tree is not an SDP.  

More restrictive than Dollo Parsimony.

– Every binary character changes state 0 → 1 at most once.
– Every ancestral architecture is a subset of a leaf architecture

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM

Pdgfr Axl Syk Src Ack

Loss of SH2

Loss of SH2 
& SH3

Loss of Fn3 Loss of SH3

Loss of Ig, Fn3, TM



Static Dollo Parsimony

This tree is an SDP.  

Less restrictive than Perfect Phylogeny

– Every binary character changes state 0 → 1 at most once.
– Every ancestral architecture is a subset of a leaf architecture

Pdgfr Axl Syk Src Ack

Taxa SH2 SH3 Ig FN3 TM
Pdgfr 0 0 1 0 1 
Axl 0 0 1 1 1 
Syk 1 0 0 0 0 
Src 1 1 0 0 0 
Csk 1 1 0 0 0 
Ack 0 1 0 0 0 
… … … …  … 

 

 

Sh2 Sh3 Ig FN3 TM



When Does Static Dollo Parsimony Fail?

– Every binary character changes state 0 → 1 at most once.
– Every ancestral architecture is a subset of a leaf architecture

This set does not admit an SDP.  

ABCDE

E

ACDE ABCE BCDE

Taxa A B C D E 
Protein 1 0 1 1 1 1 
Protein 2 1 0 1 1 1 
Protein 3 1 1 1 0 1 

… … … … … … 
 

 

ACDE
ABCE

BCDE

“E” superfamily  



Taxa A B C D E 
Protein 1 0 1 1 1 1 
Protein 2 1 0 1 1 1 
Protein 3 1 1 1 0 1 

… … … … … … 
 

 

ACDE
ABCE

BCDE

Conservative Dollo Parsimony

This set does admit an CDP.  

– Every binary character changes state 0 → 1 at most once.
– Every pair of domains in an ancestral node also appears in a leaf node.

ABCDE

E

ACDE ABCE BCDE

“E” superfamily  



When Does Conservative Dollo Parsimony Fail?

– Every binary character changes state 0 → 1 at most once.
– Every pair of domains in an ancestral node also appears in a leaf node.

The pair BC does not 
appear on any leaf!

ABEACD

ABCD ABCE

ABC

ABD ACE

Taxa B C D E
Protein 1 1 0 1 0 
Protein 2 1 0 0 1 
Protein 3 0 1 1 0 
Protein 3 0 1 0 1 

… … …  …
 

 

This set does not admit a CDP.  

ABD
ABE

ACE
ACD

“A” superfamily  



– Every binary character changes state 0 → 1 at most once.
– Every pair of domains in an ancestral node also appears in a leaf node.

ABD ABE ACEACD

AB

Insert C

Insert EInsert D

AC
Insert B

Insert EInsert D

A

It is conservative but requires multiple independent domain insertions.  

When Does Conservative Dollo Parsimony Fail?

Taxa B C D E
Protein 1 1 0 1 0 
Protein 2 1 0 0 1 
Protein 3 0 1 1 0 
Protein 3 0 1 0 1 

… … …  …
 

 

This set does not admit a CDP.  

ABD
ABE

ACE
ACD

“A” superfamily  



If a multidomain super family does not admit a 
Conservative Dollo Phylogeny then
– either the conservative assumption is violated                  

(i.e., some ancestral protein contained a pair of 
domains that is not paired in any contemporary 
protein) 

– or the Dollo assumption is violated                              
(i.e., multiple independent insertions of the same pair 
of domains are required to explain the data.)



Our Approach

• Introduce multi-domain parsimony models
– Conservative Dollo Parsimony

– Static Dollo Parsimony

Map these models to Domain Overlap Graph (DOG)
– Show CDP ↔ chordality in DOG
– Show SDP ↔ cliques in DOG correspond to proteins

– Adapt fast algorithms for testing these properties to DOGs.

• Apply test to all superfamilies in the SwissProt data base



Domain Overlap Graph (DOG)

The DOG of a superfamily,S(D), is the graph G such that 
– every domain in S\D is a vertex in G
– there is an edge between two domains if they appear 

together in some protein in S(D).

Domain Overlap Graph:
EXAMPLE:

Proteins:

Sh2Sh3Sh2 kinaseSh3

Sh2 kinase Syk

Csk, Src

kinaseSh3 Ack

Ig kinaseIg Ig

Axl

Pdgfr

kinaseIg Ig Fn3 Fn3

Ig
Fn3



Theorem 1 There exists a Conservative Dollo Parsimony tree for a given 
set of multidomain architectures, if and only if the domain overlap graph 
for this set is chordal.

Chordality can be tested in O(n+e) time, where n is the number of vertices 
and e is the number of edges  (Tarjan and Yannakakis, 1984).

Definitions:
1. A chord is an edge joining two nonconsecutive vertices of a cycle.
2. A graph is chordal if every cycle of length ≥ 4 has a chord. 

A non-chordal graphA chordal graph

Sh2Sh3

Ig
Fn3

Conservative Dollo Parsimony



Examples

Sh2 kinaseSh3

Sh2 kinase Syk

Csk, Src

kinaseSh3 Ack

Ig kinaseIg Ig

Axl

Pdgfr

kinaseIg Ig Fn3 Fn3

The DOG is chordal

Sh2Sh3

Ig
Fn3

Conservative Dollo Phylogeny

Pdgfr Axl Syk Src Ack



This is not a CDP.  

Examples

The DOG is NOT chordal

D

E

CB

ABD
ABE

ACE
ACD

ABCD ABCE

ABC

ABD ABE ACEACD

“A” superfamily  



Theorem 2 Finding the optimal Conservative Dollo Parsimony tree for a 
given set of multidomain architectures is NP complete.

Conservative Dollo Parsimony

Sh2 kinaseSh3

Sh2 kinase Syk

Csk, Src

kinaseSh3 Ack

Ig kinaseIg Ig

Axl

Pdgfr

kinaseIg Ig Fn3 Fn3



Our Approach

• Introduce multi-domain parsimony models
– Conservative Dollo Parsimony

– Static Dollo Parsimony

Map these models to Domain Overlap Graph (DOG)
– Show CDP ↔ chordality in DOG

– Show SDP ↔ cliques in DOG correspond to proteins
– Adapt fast algorithms for testing these properties to DOGs.

• Apply test to all superfamilies in the SwissProt data base



Theorem 3. There exists a Static Dollo Parsimony tree for a given set of 
multi-domain architectures, if and only if 

1. the DOG for this set is chordal
2. for every clique in the DOG, there exists an architecture that contains 

all domains in the clique.

All maximal cliques in a chordal graph can be examined in O(ne) time 
(Tarjan &Yannakakis, 1984).

Static Dollo Parsimony



Theorem 2. There exists a Static Dollo Parsimony tree for a given set of 
multi-domain architectures, if and only if 

1. the DOG for this set is chordal
2. for every clique in the DOG, there exists an architecture that contains 

all domains in the clique.

All maximal cliques in a chordal graph can be examined in O(ne) time 
(Tarjan &Yannakakis, 1984).

Static Dollo Parsimony



Theorem 2. There exists a Static Dollo Parsimony tree for a given set of 
multi-domain architectures, if and only if 

1. the DOG for this set is chordal
2. for every clique in the DOG, there exists an architecture that contains 

all domains in the clique.

All maximal cliques in a chordal graph can be examined in O(ne) time 
(Tarjan &Yannakakis, 1984).

Static Dollo Parsimony



Example

The DOG is chordal

This set admits a CDP but not an SDP.  

A

B

C

D

It contains the clique ABCD

The domain architecture ABCD 
does not appear in the protein set

ABCDE

E

ACDE ABCE BCDE

ACDE
ABCE

BCDE
“E” superfamily  



Our Approach

• Introduce multi-domain parsimony models

– Conservative Dollo Parsimony

– Static Dollo Parsimony

• Map these models to Domain Overlap Graph (DOG)

– Show CDP ↔ chordality in DOG

– Show SDP ↔ Helly property in DOG

– Adapt fast algorithms for testing these properties to DOGs.

Apply test to all superfamilies in the SwissProt database



Experiments
• Data:

– All non redundant (nr90) proteins in SwissProt. 

– Domain composition determined using CDD, based on 
PSSM domain models.

• For each of the 2896 domain superfamilies in data set:

– Construct DOG

– Test existence of  PP, SDP, CDP.

• Estimating statistical significance 

– Test existence of  PP, SDP, CDP in random graphs 
with comparable properties.



Estimating Statistical Significance

• Eliminate superfamilies that are chordal w/ high probability

– All graphs with n ≤ 3 vertices and all acyclic graphs 
are chordal.

– Graphs with edge probability p ≤ 1/n are acyclic with 
high probability.

• For remaining 479 DOGs, used simulation to determine 
probability that a comparable random graph is chordal.



Null Models

Random graph models with comparable density:
1.Uniform random 
2.Scale free: P(degree k) ~ k-γ

Construction by preferential attachment:    
Add nodes, preferentially attaching 
them to sites that are already well 
connected.



Results

Random graphs
Scale-freeUniform

00885363421-30
005015028≥30

1.01.799871310411-20
251710010028409-10
663110099371306-8
988099.599571434-5

%CDP%SDP%PP# familiesn*

*n is the number of  distinct domains in the superfamily.

34 superfamilies do not safisfy CDP, including TyrKc, Ig, PH, EGF, 
CUB, SH3, C1, Myosin_Tail



Conclusions

• Small families (≤ 20 domains) typically satisfy Static Dollo
Parsimony

Domain architectures persist (maybe)

• Large families (≥ 30 domains) do not consistently satisfy 
Conservative Dollo Parsimony

Multiple domain insertions needed to explain the data.

• Multidomain superfamilies do not have the same topological 
structure as corresponding random scale-free graphs 

Not consistent with evolution by preferential attachment .



Implications for Related Work
Genome Evolution: gene fusion versus gene fission, Snel, 

Bork & Huynen, TIG, 2000

Relative rates of gene fusion and fission in multi-domain 
proteins, Kummerfeld & Teichman, TIG, 2005

Supports use of parsimony model to investigate this 
question for small families.    Our results suggest this is 
not unreasonable.



Implications for Related Work
Scale-free behavior in protein domain networks, Wuchty, 

MBE, 2001

Multi-domain protein families and domain pairs: 
Comparison with known structures and a random model  
of domain combination, Apic, Huber, Teichmann, J. 
Struct, Func. Genomics, 2003

Multi-domain superfamilies do not have the same 
topological structure as corresponding random scale-free 
graphs 

Not consistent with evolution by preferential 
attachment .



Future work

• Other uses of local graph structure to ask 
evolutionary and functional questions.

• Models that incorporates sequence 
mutation and domain insertion and 
deletion events.
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