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Abstract

We show that, given data from a mixture of
�

well-separatedsphericalGaussiansin ��� , asim-
ple two-round variant of EM will, with high
probability, learnthecentersof theGaussiansto
near-optimal precision,if the dimensionis high
( ���	��
� � ). We relatethis to previoustheoreti-
cal andempiricalwork on theEM algorithm.

1 Intr oduction

At presentEM is the methodof choicefor learningmix-
turesof Gaussians.A seriesof theoreticalandexperimen-
tal studiesover the pastthreedecadeshave contributedto
thecollective intuition aboutthis algorithm. We will rein-
terpreta few of theseresultsin thecontext of anew perfor-
manceguarantee.

A standardcriticismof EM is thatit convergesveryslowly.
Simulationsperformedby RednerandWalker (1984),and
others, demonstratethis decisively for one-dimensional
mixturesof two Gaussians.It is alsoknown thatgivendata
from a mixture of Gaussians,whenEM getscloseto the
true solution,it exhibits first-order convergence. Roughly
speaking,the idea is this: given � data points from a
mixture with parameters(means,covariances,andmixing
weights) � � , where � is very large,the log-likelihoodhas
a localmaximumatsomesetof parameters��� closeto � � .
Let ������� denoteEM’s parameter-estimatesat time � . It can
beshown (cf. Taylor expansion)thatwhen ������� is near�� ,� � ���������! � � �#"%$'&�� � ������ � � �)(
where

$+*-, .�(0/21
and

�3&4�
is somenorm.� If theGaussians

arecloselypacked then
$

is closeto one; if they arevery
far from oneanotherthen

$
is closeto zero. Theseresults5
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arethework of many researchers;asummarycanbefound
in theoverview paperof RednerandWalker (1984).

Xu andJordan(1995)presenttheoreticalresultswhichmit-
igate someof the pessimismof first-order convergence,
particularlyin thecaseof well-separatedmixtures,andthey
notethatmoreovernear-optimal log-likelihoodis typically
reachedin just a few iterations. We also argue in favor
of EM, but in a different way. We ask, how closedoes������� have to be to �� for slow convergenceto hold? LetKML � � ( �HN 1 denotethemaximumEuclideandistancebetween
the respective meansof � � and �ON . For one-dimensional
data,it canbeseenquiteeasilyfrom canonicalexperiments
(RednerandWalker, 1984)thatconvergenceis slow evenifKML ������� ( ��� 1 is large. However, our resultssuggestthat this
no longerholdsin higherdimension.For reasonablywell-
separatedsphericalGaussiansin ��� (whereseparation is
definedpreciselyin thenext section),convergenceis very
fastuntil

KPL ������� ( �� 1RQTSUAVXW �Y . In fact,we canmake EM
attainthis accuracy in just two rounds.Theerror

S�UMVXW �)Y is
sominisculefor large � thatsubsequentimprovementsare
not especiallyimportant.

Practitionershave long known that if the datahas
�

clus-
ters,thenEM shouldbe startedwith morethan

�
centers,

and theseshouldat somestagebe pruned. We presenta
simpleexampleto demonstrateexactly why this is neces-
sary, andobtainanexpressionfor thenumberof initial cen-
terswhich shouldbeused: Z L �[P\!]�^ ��
� � 1 , where _ �D`�� is
a lower boundon thesmallestmixing weight. Thetypical
methodof pruning is to remove Gaussian-estimateswith
very low mixing weight (known asstarvedclusters). Our
theoreticalanalysisshowsthatthis is notenough,thatthere
is anothertypeof Gaussian-estimate,easyto detect,which
alsoneedsto bepruned.Specifically, it is possible(andfre-
quentlyoccursin simulations)that two of EM’s Gaussian-
estimatessharethesamecluster, eachwith relatively high
mixing weight.We presenta verysimple,provablycorrect
methodof detectingthis situationandcorrectingit.

It is widely recognizedthat a crucial issuein the perfor-
manceof EM is the choiceof initial parameters.For the
means,we use the popular techniqueof picking initial



center-estimatesrandomlyfrom thedataset.This is shown
to be adequatefor the performanceguaranteewe derive.
Our analysisalsomakesit clearthat it is vitally important
to pick good initial estimatesof the covariances,a sub-
ject which hasreceived somewhat lessattention. We use
a clever initializer whoseorigin we areunableto tracebut
which is mentionedin Bishop’s text (1995).

Our centralperformanceguaranteerequiresthat the clus-
ters actually look spherical-Gaussian,more specifically
that thedatapointsaredrawn i.i.d. from some(unknown)
mixture of sphericalGaussians.We show that if the clus-
tersarereasonablywell-separated(in a precisesense),and
if thedimension�a�b��
�� � thenonly two roundsof EM are
requiredto learnthemixture to within near-optimalpreci-
sion,with highprobability

/  � UMVcW �dY . Ourmeasureof ac-
curacy is thefunction

KML &�(e&f1
introducedabove. Theprecise

statementof the theoremcanbefound in Section3.4,and
appliesnot only to EM but alsoto othersimilar schemes,
including for instancesomeof the variantsof EM and

�
-

meansintroducedby Kearns,Mansour, andNg (1997).

Performanceguaranteesfor clusteringwill inevitably in-
volve some notion of the separation betweendifferent
clusters. Thereare at leasttwo naturalways of defining
this. Take for simplicity the caseof two � -dimensional
Gaussiansg L�h � (�i � 1 and g L�h N (�i � 1 . If eachcoordinate
(attribute) provides a little bit of discriminative informa-
tion betweenthe two clusters,thenon eachcoordinatethe
means

h � and
h N differ by at leastsomesmallamount,sayj

. The k N distancebetween
h � and

h N is thenat least
jl � .

As further attributesare added,the distancebetweenthe
centersgrows, and the two clustersbecomemoreclearly
distinguishablefrom oneanother. This is the usualratio-
nalefor usinghigh-dimensionaldata:thehigherthedimen-
sion,theeasier(in aninformation-theoreticsense)cluster-
ing shouldbe. The only problemthen, is whetherthere
arealgorithmswhichcanefficiently exploit thetradeoff be-
tweenthishighinformationcontentandthecurseof dimen-
sionality. This viewpoint suggeststhat the kmN distancebe-
tweenthecentersof � -dimensionalclusterscanreasonably
bemeasuredin unitsof

l � , andthatit is mostimportantto
developalgorithmswhich work well undertheassumption
that this distanceis someconstanttimes

l � . On theother
hand,it shouldbe pointedout that if

� h �  h N �on jl �
for someconstant

jqp .
, then for large � the overlapin

probability massbetweenthe two Gaussiansis miniscule,
exponentiallysmall in � . Therefore,it shouldnot only be
interestingbut alsopossibleto develop algorithmswhich
work well whenthe kmN distancebetweencentersof clusters
is muchsmaller, for instancesomeconstantindependentof
thedimension(asopposedto Z L l � 1 ).
Wheredo EM’s requirementsfall in this spectrumof sepa-
ration?Weshow thatEM workswell in at leasta largepart
of this span,whenthe distancebetweenclustersis bigger
than ���dr�s .

In thefinal sectionof thepaper, we discussa crucial issue:
whatfeaturesof our mainassumption(thattheclustersare
high-dimensionalGaussians)makesuchastrongstatement
aboutEM possible?This assumptionis also the basisof
all the other theoreticalresultsmentionedabove, but can
realdatasetsreasonablybeexpectedto satisfyit? If not, in
whatwaycanit usefullyberelaxed?

2 High-dimensional Gaussians

A sphericalGaussiang L�h (�t N i � 1 assignsto point u * �v�
thedensity

w L u 1mn /LyxHz 1 ��r N t �|{~}�� �  � u  h � Nx t N � (�G&A�
beingEuclideandistance. If � n L � � (e�0�e�0( � � 1 is

randomlychosenfrom g L .�(�t N i � 1 thenits coordinatesare
i.i.d. g L .�(�t N 1 randomvariables.Eachcoordinatehasex-
pectedsquaredvalue

t N so � � � � N n � L � N�M� &e&e& � � N� 1�n� t N . It thenfollows by a largedeviation boundthat
� � � N

will betightly concentratedaround� t N :� L�� � � � N  � t N � p%� � t N 1D"�S U ����9r N s �
This bound and others like it will be discussedin Sec-
tion 4. It meansthatalmosttheentireprobabilitymassofg L .�(�t N i � 1 lies in a thin shellat a radiusof

t l � from the
origin. This doesnot contradictthefact that thedensityof
theGaussianis highestat theorigin, sincethesurfacearea
at distance� from the origin,

.�" � "�t l � , increases
faster than the density at distance � decreases(Bishop,
1995,exercise1.4).

It is naturalthereforeto think of a Gaussiang L�h (9t N i � 1
as having radius

t l � . We say two Gaussiansg L�h � (�t N� i � 1~( g L�h N (9t NN i � 1 in �v� are � -separatedif� h �  h N ��� �A��� }P� t � (�t N)� l � (
that is, if they are � radii apart(Dasgupta,1999). A mix-
ture of Gaussiansis � -separatedif the Gaussiansin it are
pairwise � -separated. In generalwe will let � `f� denote
the separationbetweenthe ����� and ����� Gaussians,and� n �|��  `�¡¢ � � `f� . We can reasonablyexpect that the dif-
ficulty of learninga mixture of Gaussiansincreasesas �
decreases.For non-sphericalGaussiansthis definitioncan
beextendedreadilyby thinkingof theradiusof g L�h (J£31 as
being ¤ trace

L £31
.

A 2-separatedmixture containsclusterswith almost no
overlap. In �v� for large � , this is true even of a ��¦¥9¥ -separatedmixture,becausefor instance,two spheresof ra-
dius

l � with centers ��¦¥9¥ l � apartshareonly atiny fraction
of theirvolume.Oneusefulwayof thinkingaboutapairof� -separatedGaussiansis to imaginethatoneachcoordinate
their meansdiffer by � . If � is small,thentheprojectionof



the mixture onto any onecoordinatewill look unimodal.
This might alsobe trueof a projectionontoa few coordi-
nates.But for large � , whenall coordinatesareconsidered
together, thedistribution will ceaseto look unimodal.This
is preciselythereasonfor usinghigh-dimensionaldata.

Whatvaluesof � canbe expectedof real-world datasets?
This will vary from caseto case.As anexample,we ana-
lyzeda canonicaldatasetconsistingof handwrittendigits
collectedby USPS.Eachdigit wasrepresentedasa vector
in
,  /�(e/e§ N9¨�© . Wefit amixtureof ten(non-spherical)Gaus-

siansto this dataset, by doing eachdigit separately, and
foundthatit was

.�� ª�«
-separated.

3 A two-round variant of EM: the caseof
commoncovariance

It is instructive andconvenientto startwith thesubcasein
whichdatais drawn from amixtureof

�
Gaussianswith the

samesphericalcovariancematrix
t N i � , for someunknownt N . We will show that if �¬���
� � , EM canbe madeto

work well in just two rounds.

3.1 The EM algorithm

Givena dataset ®%¯°�v� , theEM algorithm(for a mixture
of
�

Gaussianswith commonsphericalcovariance)works
by first choosingstartingvalues

h ��¥±�` ( _ ��¥±�` (�t ��¥J� for thepa-
rameters,andthenupdatingthemiteratively accordingto
thefollowing two-stepprocedure(at time � ).
E step Let ² `�³ g L�h �����` (9t ����� N i � 1 denotethedensityof the����� Gaussian-estimate.For eachdatapoint u * ® , and

each
/G" � " � , computew �������d�` L u 1mn _ �����` ² ` L u 1´ � _ ������ ² � L u 1 (

the conditionalprobability that u comesfrom the �y���
Gaussianwith respectto thecurrentparameters.

M step Now updatethevariousparametersin an intuitive
way. Denotethesizeof ® by � ._ �������d�` n /��µ¶·�¸ w ���������` L u 1
h ���������` n ´ ¶·�¸ u w ���������` L u 1�¹_ ���������`t ��������� N n /�¹�-µ¶·�¸»ºµ ` ¢ � � u  h �������d�` � N w ���������` L u 1

3.2 The main issues

It will turn out thatwhentheseparationof amixturein �v�
is �¼�½� U �dr�s thenthechancethat two pointsfrom differ-

¾h � ¾h N ¾ hc¿¾ h �=���N¾h �=���� ¾ h �=���¿

¾h ��¥±�N

¾h ��¥J�¿¾h ��¥±��
Figure 1: For this mixture, the positionsof the center-
estimatesdo notmovemuchafterthefirst stepof EM.

entGaussiansareclosertogetherthantwo pointsfrom the
sameGaussian,is tiny,

S UMVcWfÀ0ÁÃÂ�ÄOW �)Y�Y . Thereforeanexami-
nationof interpointdistancesis enoughto almostperfectly
clusterthedata.A varietyof differentalgorithmswill work
well underthesecircumstances,andEM is no exception.

Supposethetruenumberof Gaussians,
�
, is known. Let ®

denotetheentiredataset,and ® ` thepointsdrawn from the����� trueGaussiang L�h ` (9t N i � 1 . A commonway to initial-
ize EM is to pick Å datapointsat randomfrom ® , andto
usetheseasinitial center-estimates

h ��¥±�` . How largeshouldÅ be? It turnsout that if theseÅ pointsincludeat leastone
point from each® ` , thenEM canbemadeto performwell.
ThissuggestsÅ n°Æ Ly� ��
�� � 1 . Conversely, if theinitial cen-
tersmisssome® ` , thenEM mightperformpoorly.

Here is a concreteexample (Figure 1). Let � denote
some high dimension, and place the

�
true Gaussiansg L�h � (�i � 1±(0�e�e�0( g L�h º

(�i � 1 side by side in a line, leaving
a distanceof

« l � betweenconsecutive Gaussians.As-
sign themequalmixing weights. As beforelet ® ` be the
datapointsfrom the �y��� Gaussian,andchooseEM’s initial
center-estimatesfrom thedata.Supposethe initial centers
containnothingfrom ® � , onepoint from ®cN , andat least
onepoint from ® ¿ . Theprobabilityof this event is at least
someconstant.Thenno matterhow longEM is run, it will
assignjustoneGaussian-estimateto thefirst two trueGaus-
sians. In the first roundof EM, the point from ®XN (call ith ��¥±�� ) will movebetween

h � and
h N . It will staythere,right

betweenthe two true centers. None of the other center-
estimates

h �����` will ever comecloserto
h N ; their distance

from it is so large that their influenceis overwhelmedby
thatof

h ������ . This argumentcanbeformalizedeasilyusing
thelargedeviationboundsof thenext section.

How abouttheinitial choiceof variance?WhentheGaus-
sianshave a commonsphericalcovariance,this is not all
thatimportant,exceptthatahugeoverestimatemightcause
slowerconvergence.We will usea fairly preciseestimator,
a variantof which is mentionedin Bishop’s text (1995).



After oneroundof EM, thecenter-estimatesareprunedto
leave exactly oneper trueGaussian.This is accomplished
in asimplemanner. First,removeany center-estimateswith
very low mixing weight(this is oftencalled“clusterstarva-
tion”). Any remainingcenter-estimate(originally chosen,
say, from ® ` ) hasrelatively high mixing weight, and we
canshow that asa resultof the first EM iteration, it will
have movedcloseto

h ` . A trivial clusteringheuristic,due
to HochbaumandShmoys (1985),is thengoodenoughto
selectonecenter-estimateneareach

h ` .
With exactlyonecenter-estimateper(true)Gaussian,asec-
onditerationof EM will accuratelyretrieve themeans,co-
variance,andmixing weights. In fact theclusteringof the
data(the fractionallabelsassignedby EM) will bealmost
perfect,that is to say, eachfractionallabelwill becloseto
zeroor one,andwill in almostall casescorrectlyidentify
the generatingGaussian.Thereforefurther iterationswill
not help much: theseadditional iterationswill move the
center-estimatesaroundby atmost

S�UAVXW �)Y .
3.3 The simplified algorithm

Hereis asummaryof themodifiedalgorithm,given � data
pointsin ��� which have beengeneratedby a mixtureof

�
Gaussians.The valueof Å will be specifiedlater; for the
timebeingit canbethoughtof as Z L?� ��
�� � 1 .
Initialization Pick Å datapointsat randomasstartinges-

timates
h ��¥±�` for the Gaussiancenters. Assign them

identicalmixing weights _ ��¥J�` n � Â . For an initial es-
timateof varianceuset ��¥±� N n /x � �|�� `¦¡¢ � � h ��¥±�`  h ��¥±�� � N �

EM Runoneroundof EM. Thisyieldsmodifiedestimatesh �Ç�d�` (9t �=��� ( _ �=���` .

Pruning Remove all center-estimates whose mixing
weightsarebelow _ÉÈ n �N Â � N� . Prunetheremaining
center-estimatesdown to just

�
of them:Ê Computedistancesbetweencenter-estimates.Ê Chooseoneof thesecentersarbitrarily.Ê Pick the remaining

�  / iteratively asfollows:
pick the centerfarthestfrom the onespicked so
far. (The distancefrom a point u to a set ® is�|��  Ä ·�¸ � u  �Ë � , where

�D&��
is the k N norm.)

Call the resultingcenter-estimatesÌh �=���` (where
/°"� " �

). Setthe mixing weightsto Ì_ �=���` n �
º

andthe
standarddeviation to Ìt �Ç�d� n°t ��¥±� .

EM Run one more step of EM, starting at the� Ìh �=���` ( Ì_ �Ç�d�` ( Ìt �=���9� parametersand yielding the final

estimates
h � N �` ( _ � N �` (9t � N � .

3.4 The main result

Now thatthenotationandalgorithmhavebeenintroduced,
we canstatethemaintheoremfor thecaseof commonco-
variances;a similar resultholdswhenthe Gaussianshave
differentsphericalcovariancematrices(Section8).

Theorem1 Say � data points are generated from a � -
separatedmixture of

�
Gaussians_ � g L�h � (�t N i � 1 � &e&0& �_ º g

L�h
º
(�t N i � 1 in �v� . Let ® ` denotethe pointsfrom the����� Gaussian,andlet _ �3`�� n �|��  ` _ ` . Further, defineÍ n /x  ��  «�. ��� } L /( � U N 1�� É� and Î n � N �Ï / x �� D� �

Then,assumingÍ p .
and �|��  L � ( � N � 1��Ð/2Ñ � Ñ �� 3�

and � � �|� } L�Ò Å N ( x �ÃÓ0� U s 1 , with probability at least
/  � N S�UMVcW � ��Ô Y  � S�UMVcW�Â [M\c]�^ Y  � U!WÖÕ�U �dY thevariantof EM

describedabovewill producefinal center-estimateswhich
satisfy� h � N �`  h ` �b" �

mean
L ® ` 1  h ` � � S UAVXW�× ���)Y �

The proof of this theoremwill be sketchedover the next
four sections;thedetailscanbefoundin thefull versionof
thepaper. A few wordsof explanationarein orderat this
stage.First of all, theconstantsmentionedin the theorem
shouldnotbeasourceof concernsincenoattempthasbeen
madeto optimizethem.Second,thebestthatcanbehoped
is that

h � N �` n
mean

L ® ` 1 ; therefore,the final error bound
on the center-estimatesis very closeto optimal. Finally
notice that Í p .

requiresthat �Ø�Ù� U ��r�s , and that in
orderto maketheprobabilityof failureatmost

� UAVXW �dY , it is
necessaryto set Å n Z L �[P\!]�^ ��
� � 1 , to use � n Å N poly

L?� 1
samples,andto assumethat � NJÚ n°Æ L ��
�� � 1 .
4 Initialization

We will show that the two-round algorithm retrieves
the true Gaussianswith high probability. This result
hinges crucially upon large deviation bounds for the
lengthsof pointsdrawn from a Gaussian(Dasgupta,1999,
Lemma14).

Lemma 2 Pick � from g L .�(9i � 1 . For any
� * L .�(0/21

,� L9� � � � N  � � � � � 1D" x S U �����dr N s �
Thusfor any Í p .

,
� � � N *Û, �  ���dr N � Ú ( � � ���dr N � Ú §

with probabilityat least
/  x SU �)��Ô)r N s .

It can similarly be shown that the distancebetweentwo
points from the sameGaussian(or from different Gaus-
sians)is sharplyconcentratedaroundits expectedvalue.

Lemma 3 If � is chosenfrom g L�h ` (�t N` i � 1 and Ü is cho-
senindependentlyfrom g L�h � (9t N� i � 1 thenfor any Í p .

,



thechancethat
� �  Ü � N doesnot lie in therange

� h `  h � � N � L t N`A� t N� 1 L �ÞÝ�����r N � Ú 1 Ý x � h `  h � �)ß t N` � t N� & � Ú
is at most

x S�U ��yÔ)r N s � SU �)��Ôr N .
Corollary 4 Draw � datapointsfroma � -separatedmix-
ture of

�
Gaussianswith commoncovariancematrix

t N i �
and smallestmixing weightat least _ �3`�� . Let ® ` denote
the points from the ����� Gaussian. Thenfor any Í p .

,
with probability at least

/  L � N � x�� � 1ÃS�U �)��Ô)r N s  � S�U � [ \c]�^ r ¿ N  à�N � N S�U ��yÔ�r N  � � S�U �)��Ô)r N ,
(1) for any u ( Ë * ® � , � u  �Ë � N n x t N �áÝ x t N ����r N � Úcâ
(2) for u * ® ` ( Ë * ® � ( ��ãn � , � u  ØË � N n Lyx � � N`f� 1dt N �'ÝL?x � x l x � `f� 1dt N ����r N � ÚXâ
(3) for anydatapoint Ë * ® � , � ËX h � � N n�t N �äÝ t N ����r N � Ú
while for �Tãn � , � ËØ h ` � N n L / � � N`Ö� 1Ãt N ��Ý L / �x � `f� 1dt N ����r N � Úcâ and

(4) each
� ® ` � � ¿s �å_ ` .

This meansthat if the mixture is � -separated,thenpoints
from thesameGaussianareatsquareddistanceabout

x t N �
from eachotherwhile pointsfrom differentGaussiansare
at squareddistanceat leastabout

x�L / � Æ L � N 1�1Ãt N � from
eachother. The standarddeviation of theseestimatesis
around

t N ���dr N . If � N �a�b����r N thenthisstandarddeviation
will be overwhelmedby the separationbetweenclusters,
andthereforepointsfrom the sameclusterwill almostal-
waysbeclosertogetherthanpointsfrom differentclusters.
In sucha situation,interpointdistanceswill revealenough
information for clusteringand it should,in particular, be
possibleto make EM work well. We first establishsome
simpleguaranteesabouttheinitial conditions.

Lemma 5 If Å p � andeach _ ` � _ �3`�� thenwith proba-
bility at least

/  � SUMÂ [M\c]�^  � S2Â [P\!]�^ r�s9Ó ,
(a) every Gaussianis representedin the initial center-
estimates;

(b) the ����� Gaussianprovidesat most ¨s Å�_ ` initial center-
estimates,for all

/G" � " � ; and

(c)
t ��¥±� N n�t N L / Ý-� U �dr N � Ú 1 .

Remark All the theoremsof the following sectionsare
madeundertheadditionalhypothesisthatCorollary4 and
Lemma5 hold, for somefixed Í * L .�( �N 1 .
5 The first round of EM

Whathappensduringthefirst roundof EM?Thefirst thing
we clarify is that althoughin principle EM allows “soft”
assignmentsin which eachdatapoint is fractionally dis-
tributed over variousclusters,in practicefor large � ev-
ery datapoint will give almostits entireweight to center-

estimatesfrom one(true) cluster. This is becausein high
dimension,thedistancesbetweenclustersaresogreatthat
there is just a very narrow region betweentwo clusters
wherethereis any ambiguityof assignment,andtheprob-
ability thatpointsfall within this region is miniscule.

Recallthatwearedefining ® ` asthedatapointsdrawn from
the true Gaussiang L�h ` (�t N i � 1 . Combining the last few
lemmastells us that if � N �æ�ç�� ÞÅ , in the first round of
EM eachdatapoint in ® ` will have almostall its weight
assignedto center-estimates

h ��¥±�� in ® ` . Therefore,fix at-
tentionon a specificGaussian,say g L�h � (�t N i � 1 . Without
lossof generality,

h � nè.
andthe initial center-estimatesh ��¥±�� (0�e�e�0( h ��¥J�é camefrom this Gaussian,thatis, they arein® � . We know from Lemma5 that

/ê"�ëì" ¨s Å�_ � .
Say that center-estimate

h ��¥±�� receives a reasonablyhigh

mixing weightafterthefirst round,specificallythat _ �Ç�d�� �_ È (by a lemma of the next section, at least one ofh ��¥±�� (0�e�e�0( h ��¥J�é musthave this property).We will show that

its new value
h �=���� is muchcloserto

h � (that is, to theori-
gin). For any datapoint u * ® , let w ` L u 1 denotethe(frac-

tional) weight that u givesto
h ��¥J�` duringthefirst roundof

EM. Then h �Ç�d�� n ´ ¶·�¸ w � L u 1 u´ ¶·�¸ w � L u 1 �
By our previous discussion,the most importantcontribu-
tion hereis from points u in ® � . Solet’s ignoreotherterms
for thetimebeingandfocusuponthecentralquantityh �� n ´ ¶·�¸í w �� L u 1 u´ ¶)·�¸ í w �� L u 1 �
wherew �� L u 1 is thefractionalweightassignedto u assuming
no centersotherthan

h ��¥±�� (0�e�e�e( h ��¥±�é areactive, thatis,w �� L u 1în w � L u 1w � L u 1 � &0&e& � w é L u 1 �
We have alreadyassertedthat the total mixing weight as-
signedto

h ��¥±�� , namely
´ ¶·�¸ w � L u 1+Q ´ ¶·�¸í w �� L u 1 , is

quitehigh. How canwebound
� h ��  h � � ? Thefirst stepis

to noticethatwhenthedatapointsin ® � arebeingassigned
to centers

h ��¥±�� ( � nï/�(e�0�e�~(9ë
, the fractional assignmentsw �� L &f1 canbe madeentirely on the basisof the projections

of thesepointsinto thesubspacespannedby
h ��¥±�� (e�0�e�~( h ��¥±�é

(sincethe Gaussian-estimateshave a common,andspher-
ically symmetric,covariance). Specifically, let k denote
this subspace,which hassomedimension

K "èë
(andof

course
K " � ). Rotatetheaxessothat k coincideswith the

first
K

coordinates.Write eachpoint � * ��� in the formL ��ð ( �|ñ 1 . Notethat
h ��¥±�� (e�0�e�~( h ��¥±�é havezerosin their last�  K coordinates.

Eachdatapoint � * ® � is chosenfrom g L .�(�t N i � 1 (recall
weareassuming

h � n�. for convenience)andthendivided



betweenthe variouscenter-estimates.We canreplacethe
processÊ Pick � accordingto g L .�(�t N i � 1 .Ê Divide it between

h ��¥±�� (0�e�e�0( h ��¥J�é .

by theprocessÊ Pick ��ð accordingto g L .�(9t N ieòO1 .Ê Divide it between
h ��¥±�� (0�e�e�0( h ��¥J�é .Ê Now pick � ñ accordingto g L .�(9t N i � U ò 1±�

Then h �� n ´ ¶)·�¸ í w �� L u 1 u ð´ ¶·�¸í w �� L u 1 � ´ ¶·�¸ í w �� L u 1 u ñ´ ¶·�¸í w �� L u 1 �
The last term is easy to bound because,even condi-
tional upon w �� L u 1 , the uMñ look like randomdraws fromg L .�(�t N i � U ò21 . Theotheris moredifficult becausethe uPð
arenot independentof the w �� L u 1 . A simpleestimateis to
usethe fact that each

� u ð � is about Z L l K 1 ; thereforea
convex combinationof u ð ’swill have lengthat mostaboutZ L l K 1ê" Z L l ë1 . This workswell when

ë
is very small;

by amorecarefulanalysiswewill now arriveataboundofZ L l ��
� ë)1 .
The main thing working in our favor is that

´ ¶)·�¸ í w �� L u 1
is not too small. Say this value is � . Supposeno frac-
tional assignmentswere allowed. Then we would know
that � wholedatapointswereassignedto

h ��¥J�� , andit would
be enoughto prove thatany � pointsout of ® � averageto
somethingfairly closeto theorigin.

However, fractionalassignmentsareallowed, so we must
removethis annoyancesomehow.

Lemma 6 Givenfractionallabels ó L Ë 1D*-, .�(e/e§ for a finite
setof points Ë * � ò , there is a correspondingsetof binary
labels ô L Ë 1�* � .�(e/ � such that

/ � ´ Ä ô L Ë 1�� ´ Ä ó L Ë 1
and õõõMöø÷�ù W�Ä Y Äö ÷ ù W�Ä Y õõõ

� õõõMöø÷Mú W�Ä Y Äö ÷ ú W�Ä Y õõõ
�

Proof. Let û denote
L ´ Ä ó L Ë 1 Ë 19ü L ´ Ä ó L Ë 1d1 . Suppose

for conveniencethat û liesalongsomecoordinateaxis,say
the positive ý axis. Considerthe hyperplaneý nþ� û � .
Divide the Ë ’s into two sets: the points Ü!ÿ which lie in
thehalf-spaceý�� � û � andthepoints Ü�� which lie in the
half-spaceý �æ� û � . We will adjusttheweightsof points
accordingto which sideof the hyperplanethey lie on. In
general,wedonotmind increasingtheweightsof pointsinÜ�� anddecreasingtheweightsof thosein Ü ÿ becausethis
will guaranteethat theresultingweightedaverageis in the
half-spaceý �Û� û � andis thereforefurtherfrom theorigin

than û . Theonly problemis thatwe areallowedto reduce
theoverallweightby atmostone.

Thenew weightsô L Ë 1 areassignedaccordingto thefollow-
ing procedure:Ê Setall ô L Ë 1�n ó L Ë 1 .Ê For eachpoint Ë * Ü � , increaseits weight to ô L Ë 1Én/

. This increasestheoverall weight
´ Ä ô L Ë 1 anden-

suresthattheresultingconvex combinationlies in the
half-spaceý � � û � .Ê Considerthe points Ë * Ü ÿ . Out of them,pick (1)
the point � closestto the hyperplaneý nï� û � (ie.
with the highest ý coordinate)andwhich hasweightô L � 1 � /

and (2) the point � farthestfrom the hy-
perplane(with the smallest ý coordinate)andwhich
hasweight ô L � 1 p .

. Increasethe weight of � by�|��  L ô L � 1±(0/  ô L � 1d1 anddecreasetheweightof � by
this sameamount.Eachsuchadjustmentdoesnot al-
tertheoverallweight

´ Ä ô L Ë 1 anddrivesthe ý coordi-
nateof

L ´ Ä ·��	� ô L Ë 1 Ë 19ü L ´ Ä ·�� ô L Ë 1�1 closerto
� û � .

Iterate this processuntil there remainsat most one
point with a fractionalweight;at most

� Ü ÿ � iterations
areneeded.Removethis lastpoint.

Thisprocedureguaranteesthat
´ Ä ô L Ë 1D� L ´ Ä ó L Ë 1d1  /

andthat
L ´ Ä ô L Ë 1 Ë 19ü L ´ Ä ô L Ë 1d1 lies in thehalf-spaceý �� û � . Thereforeits normmustbeat least

� û � .
Next we show that thereis no large subsetof ® � whose
averagehasverylargenorm(wearestill assuming

h � n�. ).
Lemma 7 Pick

� ® � � points randomly from g L .�(�i ò 1 .
Chooseany Î p . . Thenwith probabilityat least

/  � U�Õ ,
for any � � ��� } L Î ( K 1 , there is no subsetof ® � of
size

� � whoseaverage has squared length more thanÒPL ��  x S � ® � � ü � � L Î ü K 1 �� Þ� 1 .
Theselast two lemmascan be usedto boundthe contri-
bution of the u ð ’s to

h��� . The u ñ ’s are independentof
the w �� L u 1 ’s; thereforetheir contribution is easyto analyze.
Puttingthesetogetheryieldsthenext lemma.

Lemma 8 Chooseany Î p .
. If

´ ¶)·�¸�í w �� L u 1ø� � � / ,
where � � ��� } L Î ( K 1 then with probability at least

/  � U�Õ  S�U ��r�Ó ,� h �� � N " Ò t N � ��  x S � ® � �� � Î K �� É� � � x t N �� � / �
Proof. Let ó L u 1°n w �� L u 1 be the (fractional) weight

with which u * ® � is assignedto
h ��¥±�� . Obtainthe binary

weights ô L &f1 asin Lemma6; thereforé ¶·�¸í ô L u 1á� � .
As before,divide the coordinatesinto two groups, k and


. We will considertheaveragesû ð and û ñ of thesetwo



partsseparately. By Lemmas6 and7, with probability at
least

/  � U�Õ ,
� û ð � N n õõõõõ

´ ¶·�¸í ó L u 1 uMð´ ¶·�¸í ó L u 1 õõõõõ
N " õõõõõ

´ ¶)·�¸í ô L u 1 uMð´ ¶·�¸í ô L u 1 õõõõõ
N

" Ò t N � ��  x S � ® � �� � Î K �� É� � �
For û ñ , if

K n � then û ñ n».
andwe have nothingto

worry about. If
K � � , write �  K n�� � (where

� *, �� (e/e§ ), and

û ñ n ´ ¶·�¸í ó L u 1 u ñ´ ¶·�¸í ó L u 1 òn g L .�(� �� i�� � 1±(
where � n L ´ ¶ ó L u 1�1 N ü L ´ ¶ ó L u 1 N 1 � ´ ¶ ó L u 1 (sinceó L u 1%� ó L u 1 N ) and so � � � � /

. The chancethat ag L .�(�i�� � 1 randomvariablehassquaredlengthmore thanx � is at most
S�U �r9Ó . Therefore

� û ñ � N " x t N � ü L � � /O1
with probability at least

/  SU �r9Ó . To finish the lemma
notethat

h �� n L û ð ( û ñ 1 , so
� h �� � N nT� û ð � N � � û ñ � N .

Of coursewe cannotignoretheeffect of pointsin ® � ( � p/
, on

h �Ç�d�� . Accommodatingtheseis straightforward.

Lemma 9 Choose any Î * L .�( Å 1 . As-
sume�|��  L � ( � N 1 ����r N U Ú � / Ò , �|��  L � ( � N � 13� /0Ñ � Ñ �� 3� ,� N � � Ï / x�L Î � /O1 �� î� , � � ��� } L�Ò Å N ( x �dÓ � U s 1 . Thenwith
probability at least

/  Å L � UPÕ � S�U �r9Ó 1 , for each center-

estimate
h �Ç�d�`�� * ® ` with mixingweightmore than _ÉÈ ,� h �=���`��  h ` � " �s � t!l � �

In otherwords,to get reasonablyaccurateestimatesin the
first round,we set Å n Z L �[P\!]�^ ��
� � 1 , andwe need �á�� U ��r�s , � � ��� } L�Ò Å N ( Z L � U s 1d1 and � N � � ��
�� �[P\!]�^ .

6 Pruning

At the end of the first round of EM, let � � denotethe
center-estimatesoriginally from ® � which have high mix-

ing weight, that is, � � n � h �Ç�d�` � h ��¥±�` * ® � ( _ �=���` �_ÉÈ�� . A simpleclusteringheuristicdueto Hochbaumand
Shmoys(1985),describedin Section3.3,is usedto choose�

pointsfrom � � � � .
Lemma 10 If � N � � Ñ ��  / x Å and � � Ò . Å thenthe sets
� � obey thefollowing properties.

(a) Each � � is non-empty.

(b) There is a real value � p .
such that if u * � ` andË ( ý * � � L �Rãn � 1 then

� Ë  ý ��" � and
� u  �Ë � p � .

(c) Thepruningprocedureidentifiesexactlyonememberof
each � � .

Proof. (a) From Corollary 4 and Lemma 5 we al-
ready know that

� ® ` � � ¿s �¹_ ` , and that at most ¨s Å�_ `initial center-estimatesare chosenfrom ® ` . It was seen
in Lemma 9 that eachpoint in ® ` gives weight at least/  Å S�UA× �d�r9Ó to center-estimatesfrom ® ` . It follows that
at the endof the first roundof EM, at leastoneof these
center-estimatesmusthavemixing weightat leastL ¿ s �å_ ` 1 L /  Å S�UA× �Ã��r�Ó 1� & ¨s Å�_ ` n «Ï Å & L /  Å S UA× �Ã�r9Ó 1Ø� _3È
(undertheconditionson � ( Å ), andtherefore� ` cannotbe
empty.

(b) Pick u * � ` and Ë ( ý * � � for any pair �áãn � . Then� ËD ý �Þ" � and
� u  |Ë �R� � `Ö� t l �  � where� is twice

the precisionof the center-estimatesafter the first round
of EM. By the resultsof the previous sectionwe may set
� n �N � t l � .

(c) There are
�

true clustersand the pruning procedure
picksexactly

�
center-estimates.It will not pick two from

thesametrueclusterbecausethesemustbeatdistance
" �

from eachother, whereastheremust be someuntouched
clustercontaininga center-estimateat distance

p � from
all pointsselectedthusfar.

7 The secondround of EM

We now have one center-estimate Ìh �Ç�d�` per true cluster
(for conveniencepermutetheir labels to match the ® ` ),
eachwith mixing weight �

º
andcovarianceÌt �=��� N i � , whereÌt �=��� n t ��¥J� . Furthermoreeach Ìh �Ç�d�` is within distance�s � t l � of thecorrespondingtrueGaussiancenter

h ` . Such
favorablecircumstanceswill make it easyto show that the
subsequentroundof EM will achieve near-perfectcluster-
ing. Thedetailsaresimilarto thoseof thefirst roundof EM
andareomittedfrom this abstract.Combiningthevarious
resultssofargivesTheorem1.

We canalsoboundthefinal mixing weightsandvariance.
Hereis anexample.

Lemma 11 To the resultsof Theorem 1 it can be added
that for any � ,� ® ` �� & L /  � S UA× ���r9Ó 1Ø" _ � N �` " � ® ` �� � S UA× �d�r9Ó
8 The caseof different spherical covariance

matrices

A few changesneedto be madewhen the datais drawn
from amixture _ � g L�h � (9t N� i � 1 � &e&e& � _ º g

L�h
º
(9t N
º
i � 1 in

which the
t ` mightnotbeidentical.In thealgorithmitself,

therearetwo changes.



Initialization Pick initial centersand mixing weightsas
before.For initial estimatesof thevariancesuset ��¥±� N` n /x � �|�� �O¡¢ ` � h ��¥±�`  h ��¥±�� � N �

EM Runoneroundof EM, asbefore,to get themodified
estimates

h �Ç�d�` (9t �=��� ( _ �=���` .

Pruning Again remove center-estimateswith weight be-
low _ È . Theonly differencein the remainderof the
pruningprocedureis thatthedistancebetweencentersh �Ç�d�` and

h �=���� is now weightedby the individual vari-
ances,

KML�h �=���` ( h �=���� 1�n � h �=���`  h �Ç�d�� �t ��¥±�` � t ��¥J�� �
EM Onelaststepof EM, asbefore.

The modified distancemeasurein the pruning step is
meant,roughly, to compensatefor the fact thatpartof the
distancebetween

h �����` and
h ������ is on a scaleof

t �����` while

partof it is onascaleof
t ������ . Theanalysisfollowsroughly

thesameoutlineasbefore,with a few extra subtleties.An
additionalassumptionis needed,� N`f� ��� } L t N` (9t N� 1D� � t N`  t N� � for all � ( � (
in orderto ruleoutsituationsin whichoneclusteris nested
within another. The final theoremremainsthe same,the
error

� h � N �`  h ` � now beingproportionalto
t ` insteadof

to thecommon
t

of thepreviouscase.

9 Concluding remarks

This paperprovidesprincipledanswersto many questions
surroundingEM: how many clustersshouldbe used,how
the parametersought to be initialized, and how pruning
shouldbecarriedout. Someof theintuition presentedhere
confirmscurrentpractice;someof it is new. Either way,
this materialshouldbeof interestto practitionersof EM.

But whatabouttheclaim thatEM canbemadeto work in
just two rounds?This requireswhatwe call the

Strong Gaussianassumption. Thedataarei.i.d. samples
from a truemixtureof Gaussians.

Thisassumptionis thestandardsettingfor othertheoretical
resultsaboutEM, but is it reasonableto expectof realdata
sets?We recommendinsteadthe

WeakGaussianassumption.Thedatalookslike it comes
from amixtureof Gaussiansin thefollowingsense:for any
spherein �v� , thefractionof thedatathatfalls in thesphere

is theexpectedfractionunderthemixturedistribution, Ý � ¥ ,
where

� ¥ is sometermcorrespondingto samplingerrorand
will typically be proportionalto � U ��r N , where � is the
numberof samples.Someotherconceptclassof low VC
dimensioncanbesubstitutedfor spheres.

The strongassumptionimmediatelyimplies the weakas-
sumption (with high probability) by a large deviation
bound,sincethe conceptclassof spheresin �v� hassmall
VC dimension.Whatkindsof conclusionsfollow from the
strongassumptionbut not theweakone?Hereis anexam-
ple: “if two datapointsaredrawn from g L .�(9i � 1 thenwith
overwhelmingprobability they areseparatedby a distance
of at least

l � ”. The weak assumptiondoesnot support
this; with just two samples,in fact, the samplingerror is
so high that it doesnot allow us to draw any non-trivial
conclusionsatall.

It is often argued that the Gaussianis the most natural
model of a clusterbecauseof the central limit theorem.
However, centrallimit theorems,specificallyBerry-Esśeen
theorems(Feller, 1966),yield Gaussiansin thesenseof the
weak assumption,not the strongone. For the samerea-
son,the weakGaussianassumptionarisesnaturallywhen
we take randomprojectionsof mixturesof productdistri-
butions(DiaconisandFreedman,1984). Ideally therefore,
we could provide performanceguaranteesfor EM under
just this condition. Perhapsour analysiscanbe extended
appropriately. For anexampleof whatneedsto bechanged
in thealgorithm,considerthattheweakassumptionallowsl � out of � datapointsto beplacedarbitrarily. An out-
lier removal proceduremight be necessaryto preventEM
from beingconfusedby thispossiblymaliciousnoise.
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