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Abstract

We show that, given datafrom a mixture of &
well-separate@dphericalGaussiang R", asim-
ple two-round variant of EM will, with high
probability, learnthe centersof the Gaussianso
nearoptimal precision,if the dimensionis high
(n > log k). We relatethis to previoustheoreti-
calandempiricalwork onthe EM algorithm.

1 Intr oduction

At presentEM is the methodof choicefor learningmix-

turesof GaussiansA seriesof theoreticalandexperimen-
tal studiesover the pastthreedecade$ave contributedto

the collective intuition aboutthis algorithm. We will rein-

terpreta few of theseresultsin the context of anew perfor

manceguarantee.

A standarctriticism of EM is thatit corvergesvery slowly.
Simulationsperformedby RednerandWalker (1984),and
others, demonstratethis decisively for one-dimensional
mixturesof two Gaussianslt is alsoknown thatgivendata
from a mixture of Gaussianswhen EM getscloseto the
true solution, it exhibits first-order corvergence Roughly
speaking,the idea is this: given m datapoints from a
mixture with parametergmeanscovariancesand mixing
weights)#*, wherem is very large, the log-likelihoodhas
alocal maximumat somesetof parameterg™ closeto 6*.
Let 6 denoteEM’s parameteestimatesattime ¢. It can
beshawvn (cf. Taylor expansionthatwhené® is neard™,

[0 — 6™ < A- [0 — 6™,

where) € [0,1) and|| - || is somenorm! If the Gaussians
arecloselypacledthen\ is closeto one;if they arevery
far from oneanotherthen\ is closeto zero. Theseresults
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arethework of mary researchersg summarycanbefound
in the overview paperof RednerandWalker (1984).

Xu andJordan(1995)presentheoreticaresultswhich mit-
igate some of the pessimismof first-order corvergence,
particularlyin thecaseof well-separatedixtures,andthey
notethatmoreorer nearoptimallog-likelihoodis typically
reachedin just a few iterations. We also argue in favor
of EM, but in a differentway. We ask, how closedoes
6" have to beto 6™ for slow convergenceto hold? Let
d(8,,0>) denotethe maximumEuclideandistancebetween
the respectie meansof #; and#,. For one-dimensional
data,it canbeseemuiteeasilyfrom canonicakxperiments
(RednerandWalker, 1984)thatcorvergencas slow evenif
d(6,6™) is large. However, our resultssuggesthatthis
no longerholdsin higherdimension.For reasonablyvell-
separatedphericalGaussiansn R (wheresepaation is
definedpreciselyin the next section),corvergenceis very
fastuntil d(6(?,0™) ~ e~(") In fact,we canmake EM
attainthis accurag in justtwo rounds.Theerrore=") is
sominisculefor largen thatsubsequenimprovementsare
notespeciallyimportant.

Practitionershave long known thatif the datahask clus-
ters,thenEM shouldbe startedwith morethank centers,
andtheseshouldat somestagebe pruned. We presenta
simple exampleto demonstratexactly why this is neces-
sary andobtainanexpressiorfor thenumberof initial cen-
terswhich shouldbe used:O(ﬁ log k), wherew,y, i, is
alower boundon the smallestmixing weight. The typical
methodof pruningis to remove Gaussian-estimatesith
very low mixing weight (known asstarvedcluster). Our
theoreticabnalysisshavsthatthisis notenoughthatthere
is anothertype of Gaussian-estimateasyto detectwhich
alsoneeddo bepruned.Specificallyit is possible(andfre-
guentlyoccursin simulations)thattwo of EM’s Gaussian-
estimatesharethe samecluster eachwith relatively high
mixing weight. We presenta very simple,provably correct
methodof detectingthis situationandcorrectingit.

It is widely recognizedthat a crucial issuein the perfor
manceof EM is the choiceof initial parameters.For the
means,we use the popular techniqueof picking initial



centerestimatesandomlyfrom thedataset. Thisis shovn
to be adequateor the performanceguaranteene derive.
Our analysisalsomakesit clearthatit is vitally important
to pick good initial estimatesof the covariances,a sub-
ject which hasreceved somavhat lessattention. We use
aclever initializer whoseorigin we areunableto tracebut
whichis mentionedn Bishopstext (1995).

Our centralperformanceguaranteeequiresthat the clus-
ters actually look spherical-Gaussianmore specifically
thatthe datapointsaredrawn i.i.d. from some(unknown)
mixture of sphericalGaussiansWe show thatif the clus-
tersarereasonablyvell-separatedin a precisesense)and
if thedimensiom >> log k thenonly two roundsof EM are
requiredto learnthe mixture to within nearoptimal preci-
sion,with high probability1 — k~*("). Our measuref ac-
curag is thefunctiond(-, -) introducedabove. The precise
statemenbf the theoremcanbefoundin Section3.4, and
appliesnot only to EM but alsoto othersimilar schemes,
including for instancesomeof the variantsof EM and k-
meandntroducedby Kearns MansourandNg (1997).

Performanceguaranteedor clusteringwill inevitably in-
volve some notion of the sepaation betweendifferent
clusters. Thereare at leasttwo naturalways of defining
this. Take for simplicity the caseof two n-dimensional
GaussiansV (i1, I,,) and N (us, I,). If eachcoordinate
(attribute) providesa little bit of discriminatve informa-
tion betweerthe two clustersthenon eachcoordinatethe
meansu; andus differ by atleastsomesmallamountsay
8. The L, distancebetweeru; andus is thenatleastd/n.
As further attributesare added,the distancebetweenthe
centersgrows, and the two clustershecomemore clearly
distinguishabldrom one another This is the usualratio-
nalefor usinghigh-dimensionatiata:thehigherthedimen-
sion, the easier(in aninformation-theoreticensexrluster
ing shouldbe. The only problemthen, is whetherthere
arealgorithmswhich canefficiently exploit thetradeof be-
tweenthis highinformationcontentandthecurseof dimen-
sionality This viewpoint suggestshatthe L, distancebe-
tweenthe centerof n-dimensionatlusterscanreasonably
bemeasuredh unitsof 1/n, andthatit is mostimportantto
developalgorithmswhich work well underthe assumption
thatthis distances someconstantimes,/n. Ontheother
hand,it shouldbe pointedout thatif ||u; — p2|| = dv/n
for someconstanty > 0, thenfor large n the overlapin
probability massbetweenthe two Gaussiangs miniscule,
exponentiallysmallin n. Thereforejt shouldnot only be
interestingbut also possibleto develop algorithmswhich
work well whenthe L, distancebetweercenterf clusters
is muchsmaller for instancesomeconstantndependenof
thedimension(asopposedo O(y/n)).

Wheredo EM’srequirementgall in this spectrunof sepa-
ration?We shaw thatEM workswell in atleastalarge part
of this span,whenthe distancebetweenclustersis bigger
thann!/4,

In thefinal sectionof the paperwe discussa crucialissue:
whatfeaturesof our mainassumptior{thatthe clustersare
high-dimensionaGaussiansinake sucha strongstatement
aboutEM possible? This assumptioris alsothe basisof
all the othertheoreticalresultsmentionedabove, but can
realdatasetsreasonablypeexpectedo satisfyit? If not,in
whatway canit usefullyberelaxed?

2 High-dimensional Gaussians

A sphericalGaussianV (i, 0%I,,) assigngo pointz € R”

thedensity
_ 1 llz — pll?
p(a&') - (27_[_)”/20_” €xp ( 202 )

|| - || being Euclideandistance.lf X = (Xi,...,X,) is
randomlychoserfrom N (0, 0%1,,) thenits coordinatesre
i.i.d. N(0,0?) randomvariables.Eachcoordinatehasex-
pectedsquaredralues? soE|| X||?> = E(X?+---+X2) =
no?. It thenfollows by alarge deviation boundthat|| X ||
will betightly concentrate@roundno?:

P(||I X2 - no?| > eno?) < e /24,

This bound and otherslike it will be discussedn Sec-
tion 4. It meanghatalmostthe entire probability massof

N(0,0%I,) liesin athin shellataradiusof o/n from the

origin. This doesnot contradictthe factthatthe densityof

the Gaussiars highestat the origin, sincethe surfacearea
at distancer from the origin, 0 < r < o+/n, increases
fasterthan the density at distancer decreasegBishop,

1995,exercisel.4).

It is naturalthereforeto think of a GaussianN (i, 0%1,,)
as having radius ov/n. We say two Gaussians
N(p1,021,), N(us,021,) in R* arec-sepaatedif

llr — p2|| > cmax{oy1, 02 }v/n,

thatis, if they arec radii apart(Dasgupta1999). A mix-

ture of Gaussiangs c-separatedf the Gaussiansn it are
pairwise c-separated. In generalwe will let ¢;; denote
the separationbetweenthe i** and j** Gaussiansand
¢ = min;x; ¢;;. We canreasonablyexpectthat the dif-

ficulty of learninga mixture of Gaussiansncreasesasc

decreaseskor non-sphericalGaussianshis definition can
beextendedeadilyby thinking of theradiusof N (u, X) as
being/traceX).

A 2-separatedmixture containsclusterswith almostno
overlap. In R™ for large n, this is true even of a 1(1]—0-

separatednixture,becausdor instancefwo sphere®f ra-
dius/n with centers;is+/n apartshareonly atiny fraction
of theirvolume.Oneusefulway of thinking abouta pair of

c-separateaussianss to imaginethaton eachcoordinate
their meandiffer by c. If ¢ is small,thenthe projectionof



the mixture onto arny one coordinatewill look unimodal.

This might alsobe true of a projectionontoa few coordi-

nates.But for largen, whenall coordinatesreconsidered
togetherthedistribution will ceasdo look unimodal. This

is preciselythereasorfor usinghigh-dimensionatiata.

Whatvaluesof ¢ canbe expectedof real-world datasets?
Thiswill vary from caseto case.As anexample,we ana-
lyzed a canonicaldatasetconsistingof handwrittendigits

collectedby USPS.Eachdigit wasrepresentedsa vector
in [—1,1]2%¢. Wefit amixtureof ten(non-sphericalzaus-
siansto this dataset, by doing eachdigit separatelyand

foundthatit was0.63-separated.

3 A two-round variant of EM: the caseof
common covariance

It is instructive andcorvenientto startwith the subcasén
whichdatais drawvn from amixtureof ¥ Gaussiansith the
samesphericakcovariancematrix o2 I, , for someunknown
a%. We will shav thatif n >> log k, EM canbe madeto
work well in justtwo rounds.

3.1 The EM algorithm

GivenadatasetS C R”, the EM algorithm(for a mixture
of k Gaussiansvith commonsphericalcovariance)works
by first choosingstartingvaluesy."’ , w®, 5 for the pa-
rameters andthenupdatingthemiteratively accordingto
thefollowing two-stepprocedurgattimert).

E step Letr; ~ N (i, o(21,,) denotethedensityof the
ith Gaussian-estimat&or eachdatapointz € S, and
eachl < i < k, compute

(t)
w,; ;i (x
p§t+1>($) — ! (t)( ) )
2wy ()

the conditionalprobability thatz comesfrom the it"
Gaussiawith respecto the currentparameters.

M step Now updatethe variousparameteré anintuitive
way. Denotethesizeof S by m.

1
AR S S
T€S
u§t+1) _ ersﬂf p§t+1>($)
1 mw§t+1)
k
1
o{t+1)2 — Z Z lle — u§t+1)”2 p§t+1)(.'17)
z€S i=1

3.2 The main issues

It will turn outthatwhenthe separatiorof a mixturein R™
is ¢ > n~'/* thenthe chancethat two pointsfrom differ-
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Figure 1: For this mixture, the positionsof the center
estimateglo notmove muchafterthefirst stepof EM.

entGaussiansire closertogetherthantwo pointsfrom the
sameGaussianis tiny, e~ ?®¥(n))  Thereforean exami-
nationof interpointdistancess enoughto almostperfectly
clusterthedata.A varietyof differentalgorithmswill work
well underthesecircumstancesandEM is no exception.

Supposehetrue numberof Gaussiansk, is known. Let S
denotethe entiredataset,andsS; thepointsdravn from the
ith true GaussianV (u;,0%1,,). A commonway to initial-
ize EM is to pick I datapointsat randomfrom S, andto
usetheseasinitial centerestimatesug()). How largeshould
[ be? It turnsoutthatif thesel pointsincludeat leastone
pointfrom eachS;, thenEM canbe madeto performwell.
Thissuggest$ = Q(klog k). Corverselyif theinitial cen-
tersmisssomes;, thenEM mightperformpoorly.

Here is a concreteexample (Figure 1). Let n denote
some high dimension, and place the k true Gaussians
N(p1, Ip,),---, N(ug, I,) sideby sidein a line, leaving
a distanceof 3./n betweenconsecutie Gaussians. As-
sign them equalmixing weights. As beforelet S; be the
datapointsfrom theit* GaussianandchooseEM’s initial
centerestimatedrom the data. Supposeéheinitial centers
containnothingfrom S;, one point from S,, andat least
onepointfrom S;. The probability of this eventis at least
someconstantThenno matterhow long EM is run, it will
assigrjustoneGaussian-estimate thefirsttwo trueGaus-
sians. In the first round of EM, the point from S, (call it
,u§°>)will move betweeru; andu,. It will staythere right
betweenthe two true centers. None of the other center
estimatespg1t> will ever comecloserto us; their distance
from it is so large thattheir influenceis overwhelmedby
thatof ,uit). This argumentcanbe formalizedeasilyusing
thelarge deviation boundsof the next section.

How abouttheinitial choiceof varianceWhenthe Gaus-
sianshave a commonsphericalcovariance this is not all
thatimportant,exceptthatahugeoverestimatenightcause
slower corvergence We will useafairly preciseestimator
avariantof whichis mentionedn Bishop’s text (1995).



After oneroundof EM, the centerestimatesareprunedto
leave exactly onepertrue GaussianThis is accomplished
in asimplemanner First,removeary centerestimatesvith
very low mixing weight(thisis oftencalled“clusterstana-
tion”). Any remainingcenterestimate(originally chosen,
say from S;) hasrelatively high mixing weight, and we
canshaw thatasa resultof the first EM iteration, it will
have movedcloseto u;. A trivial clusteringheuristic,due
to Hochbaumand Shmays (1985),is thengoodenoughto
selectonecenterestimateneareachy;.

With exactlyonecenterestimateper(true)Gaussianasec-
onditerationof EM will accuratelyretrieve themeansgo-
variance andmixing weights. In factthe clusteringof the
data(thefractionallabelsassignedy EM) will be almost
perfect,thatis to say eachfractionallabelwill be closeto
zeroor one,andwill in almostall casescorrectlyidentify
the generatingGaussian.Thereforefurther iterationswill
not help much: theseadditionaliterationswill move the
centerestimatesaroundoy at moste=(),

3.3 The simplified algorithm

Hereis asummaryof themodifiedalgorithm,givenm data
pointsin R” which have beengeneratedy a mixtureof &

Gaussians.The value of [ will be specifiedlater; for the
time beingit canbethoughtof asO(k log k).

Initialization Pick/ datapointsat randomasstartinges-
timatesu§°> for the Gaussiarcenters. Assignthem
identicalmixing Weightswz@) = % For aninitial es-
timateof varianceuse

0

I

Lo 0
o0 = o min | —

EM Runoneroundof EM. Thisyieldsmodifiedestimates
,ugl) , 0<1>, wgl) .

Pruning Remaore all centerestimates whose mixing
weightsarebelov wr = 2il+ % Prunetheremaining
centerestimatesiown to just k of them:

o Computedistancedbetweercenterestimates.
e Chooseoneof thesecentersarbitrarily.

e Pick theremainingk — 1 iteratively asfollows:
pick the centerfarthestfrom the onespicked so
far (The distancefrom a point z to a setsS is
mingcg ||z — y||, where|| - || is the Ly norm.)

Call the resultingcenterestimatesﬁ” (wherel <
i < k). Setthe mixing weightsto @§1> = % andthe
standardieviationto (1) = (%,

EM Run one more step of EM, starting at the
{(a", & 5} parametersand yielding the final
estimategi{”, w02,

3.4 The main result

Now thatthe notationandalgorithmhave beenintroduced,
we canstatethe maintheoremfor the caseof commonco-
variancesa similar resultholdswhenthe Gaussianhave
differentsphericakovariancematricegSection8).

Theorem1l Saym data points are generted from a c-
sepaatedmixture of k Gaussiansvy N (p1,0%1,) + - - - +
wi N (ug,0I,) in R*. LetS; denotethe pointsfrom the
it" Gaussianandlet wy,;;, = min; w;. Further, define

n
512lnm’

-2
1 In30max(1,c%) and § =
2 Inn

Then,assuminga > 0 and min(n,c?n) > 18 + 8Inn
andm > max(412,218¢=*), with probability at least1 —
m2e=Un**) _ pe=wmin) _ =(B=1) thevariantof EM
describedabove will producefinal centerestimatesvhich
satisfy

16 — il < [ImearS;) — pl| + e~

The proof of this theoremwill be sketchedover the next
four sectionsthe detailscanbefoundin thefull versionof
the paper A few wordsof explanationarein orderat this
stage.First of all, the constantsnentionedn the theorem
shouldnotbeasourceof concerrsinceno attempthasbeen
madeto optimizethem. Secondthebestthatcanbehoped
is thatuz{2> = mear{S;); therefore,the final error bound
on the centerestimateds very closeto optimal. Finally
noticethata > 0 requiresthatc > n~'/4, andthatin
orderto make the probabilityof failureatmostk—) it is
necessaryo set! = O(—— log k), to usem = I?poly(k)

Wmin

samplesandto assumehatn?® = Q(log k).

4 |nitialization

We will shav that the two-round algorithm retrieves
the true Gaussianswith high probability ~ This result
hinges crucially upon large deviation bounds for the
lengthsof pointsdrawvn from a Gaussiar{Dasguptal1999,
Lemmal4).

Lemma 2 Pick X fromN(0, I,,). For anye € (0, 1),
P(|X||? = n| > en) < 2¢ "/,

Thusfor anya > 0, || X||?> € [n — n'/2T* n 4+ nl/2te]
with probability at leastl — 2e—"""/24,

It cansimilarly be shavn that the distancebetweentwo
points from the sameGaussian(or from different Gaus-
sians)is sharplyconcentrate@roundits expectedvalue.

Lemma 3 If X is chosenfrom N (u;,021,) andY is cho-
senindependentlyrom N(,uj,a]?In) thenfor anya > 0,



thechancethat || X — Y'||? doesnotlie in therange ||u; —
will® + (07 +03) (nEn*2+) £2||pi = pjlly JoF + 07 -n®

is at most267n2“/24 + e*n2“/2.

Corollary 4 Drawm datapointsfroma c-sepaatedmix-
ture of k£ Gaussiansvith commoncovariancematrix o2 1I,,

and smallestmixing weight at leastw,,;,. LetS; denote
the points from the it* Gaussian. Thenfor any o > 0,

with probability at least 1 — (m? + 2km)e " /24 —

ke—mwmi"/32 _ %m2e—n2“/2 _ kme—n2°/2,

(1)foranyz, y € ;. |z — ylI2 = 20%n + 20%n!/2+e;

(2)fors € Siy € 5,1 # J, 5 — gl = 2+ )oPn +
(2 + 2\/§c,~j)a2n1/2+a;

(3) for anydatapointy € S;, [|[y—pu;||? = o?nLo?n!/2+

while for i # 7, ly — wll* = (1 4 ¢)o’n £ (1 +

20ij)02n1/2+0‘; and
(4) each |S;| > 2muw;.

This meansthatif the mixture is c-separatedthen points
from thesameGaussiarareatsquarediistanceabout2s?n
from eachotherwhile pointsfrom differentGaussiansire
at squareddistanceat leastabout2(1 + Q(c?))o?n from
eachother The standarddeviation of theseestimatess
arounds?n'/2. If ¢®>n > n'/? thenthis standardleviation
will be overwhelmedby the separatiorbetweenclusters,
andthereforepointsfrom the sameclusterwill almostal-
waysbe closertogethetthanpointsfrom differentclusters.
In sucha situation,interpointdistanceswill revealenough
information for clusteringandit should,in particulay be
possibleto make EM work well. We first establishsome
simpleguaranteeabouttheinitial conditions.

Lemmab5 If [ > k andeah w; > wy,;, thenwith proba-
bility at leastl — ke~ twmin — felwmin/48

(a) every Gaussianis representedin the initial center
estimates;

(b) the it Gaussianprovidesat most%lwi initial center
estimatesforall 1 < i < k; and

(€) o002 = g2(1 £ n~1/2+e),

Remark All the theoremsof the following sectionsare
madeunderthe additionalhypothesighat Corollary 4 and
Lemmab hold, for somefixeda € (0, 3).

5 The first round of EM

Whathappensluringthefirst roundof EM? Thefirst thing
we clarify is that althoughin principle EM allows “soft”
assignmentsn which eachdatapoint is fractionally dis-
tributed over variousclusters,in practicefor large n ev-
ery datapoint will give almostits entireweightto center

estimatedrom one (true) cluster This is becauseén high
dimensionthe distancedetweerclustersareso greatthat
thereis just a very narrov region betweentwo clusters
wherethereis any ambiguity of assignmentandthe prob-
ability thatpointsfall within thisregionis miniscule.

Recallthatwe aredefining$; asthedatapointsdravn from

the true GaussianN (u;,02I,,). Combiningthe last few

lemmastells us thatif ¢?n > Inl, in the first round of

EM eachdatapointin S; will have almostall its weight

assignedo centerestimates;é.o) in S;. Thereforefix at-

tentionon a specificGaussiansay N (u1,0%1,,). Without

lossof generality 43 = 0 andtheinitial centerestimates
,uf’), e ,,u,(10> camefrom this Gaussianthatis, they arein

S1. We know from Lemmab that1 < ¢ < 2{w.

Say that centerestimateuf’) receves a reasonablyhigh

mixing weightafterthefirst round,specificallythatw§l) >
wr (by a lemma of the next section, at least one of

/AO), ... ,,u,<,°> musthave this property).We will show that
its new value,u§1> is muchcloserto y; (thatis, to the ori-
gin). For ary datapointz € S, let p;(z) denotethe (frac-
tional) weightthatz givesto ,uz@) duringthefirst roundof
EM. Then
M§1) _ Ezespl(x)x‘
> zesPi(z)

By our previous discussionthe mostimportantcontribu-
tion hereis from pointsz in S;. Solet'signoreotherterms
for thetime beingandfocusuponthe centralquantity

= 2zes, Pi(2)z
! ZzESl p{(ﬂ?)

wherep; (z) is thefractionalweightassignedo z assuming
no centersotherthanu§0>, ey ,uf,0> areactie, thatis,

* D1 (IL')
pi(x) = .

)= @+ @
We have alreadyassertedhatthe total mixing weight as-
signedto ,u§0>, namelyy  copi(z) = X ,c5, Pi(2), IS
quitehigh. How canwe bound||uf — 1 || ? Thefirst stepis
to noticethatwhenthedatapointsin S; arebeingassigned
to center5p§.°>,j = 1,...,q, the fractional assignments
p;(-) canbe madeentirely on the basisof the projections

of thesepointsinto thesubspacspannedy ,uf)), . ,/,L,g(])

(sincethe Gaussian-estimatdsve a common,andspher

ically symmetric,covariance). Specifically let L denote
this subspacewhich hassomedimensiond < ¢ (and of

coursed < n). Rotatetheaxessothat L coincideswith the
first d coordinates Write eachpoint X € R” in theform

(X1, Xg). Notethat{” ..., 4l have zerosin theirlast
n — d coordinates.

Eachdatapoint X € S; is choserfrom N (0, ¢I,,) (recall
we areassumingu; = 0 for corveniencepndthendivided



betweenthe variouscenterestimates.We canreplacethe
process

e Pick X accordingto N (0, 01,,).

o Divideit betweeru”, ..., ul?.
by theprocess

e Pick X, accordingto N (0,021,).
e Divideit betweerpf)), e ,ué(’).

e Now pick X i accordingo N (0,021, 4).

Then

u = Yees, PI@)TL | Yies, Pi(T)TR
! ZEES1PI('%) Zzeslpf(x)

The last term is easyto bound because,even condi-
tional upon pi(z), the zr look like randomdraws from
N(0,02I, _4). Theotheris moredifficult because¢he
arenot independenbf the pi(z). A simpleestimates to
usethe fact that each||z || is aboutO(v/d); thereforea
convex combinationof z,’swill have lengthat mostabout
O(Vd) < O(,/g). Thisworkswell wheng is very small;
by amorecarefulanalysisve will now arrive ata boundof

O(Vlog ).

The mainthing working in our favoris thaty ¢ pi(z)
is not too small. Say this valueis r. Supposeno frac-
tional assignmentsvere allowed. Thenwe would know
thatr wholedatapointswereassignedo uf)), andit would
be enoughto prove thatanyr pointsout of S; averageto
somethingairly closeto theorigin.

However, fractional assignmentsare allowed, so we must
remove this anngyancesomehav.

Lemma 6 Givenfractionallabelsf(y) € [0, 1] for afinite
setof pOintSy € R?, theris a correspondingsetof binary
labelsg(y) € {0,1} sudthatl + 37 g(y) > 3, f(y)

>, 9(m)y H )E F(y)y H
>, 9(v) >, ()

and |

Proof  Let A denote(3_, f(y)y)/(3_, f(y)). Suppose
for corveniencdahat A liesalongsomecoordinateaxis,say

the positive z axis. Considerthe hyperplanez = ||A4]|.
Divide the 's into two sets: the points Y. which lie in
the half-space: < || Al| andthepointsY> whichlie in the
half-spacez > ||A||. We will adjustthe weightsof points
accordingto which side of the hyperplanethey lie on. In
generalwe do not mindincreasingheweightsof pointsin
Y> anddecreasingheweightsof thosein Y. becausthis
will guaranteehattheresultingweightedaverageis in the
half-space: > || A|| andis thereforefurtherfrom theorigin

than A. Theonly problemis thatwe areallowedto reduce
theoverallweightby atmostone.

Thenew weightsg(y) areassignedccordingo thefollow-
ing procedure:

e Setall g(y) = f(y).

e Foreachpointy € Y, increasedts weightto g(y) =
1. Thisincreaseshe overallweight}_, g(y) anden-
suregthattheresultingcorvex combinationliesin the
half-space: > ||4]|.

e Considerthe pointsy € Y.. Outof them, pick (1)
the point u closestto the hyperplanez = [|4] (ie.
with the highestz coordinate)andwhich hasweight
g(u) < 1 and(2) the point v farthestfrom the hy-
perplane(with the smallestz coordinate)and which
hasweight g(v) > 0. Increasethe weight of u by
min(g(v),1 — g(u)) anddecreas¢heweightof v by
this sameamount.Eachsuchadjustmentioesnot al-
tertheoverallweight}, g(y) anddrivesthez coordi-
nateof (3, cy_ 9()y)/ (X ey 9(y)) closerto ||Al].
Iterate this processuntil thereremainsat most one
pointwith a fractionalweight; at most|Y. | iterations
areneededRemorethislastpoint.

This procedureguaranteethat ", g(y) > (3_, f(y)) —
andthat (-, 9(y)y)/(3_, 9(y)) liesin thehalf-spacez >

[|A|]. Thereforeits normmustbeatleast|| A||. I

Next we show that thereis no large subsetof S; whose
averagehasverylargenorm(wearestill assumings; = 0).

Lemma? Pick |Si| points randomly from N(0, ;).
Chooseny > 0. Thenwith probability at leastl —m =7,
for any v > max(8,d), ther is no subsetof S; of
size > v whoseaverage has squaed length more than
4(In2e|S1|/v + (B/d) Inm).

Theselast two lemmascan be usedto boundthe contri-

bution of the z1’s to uf. The zg’s are independenof

the p} (z)'s; thereforetheir contribution is easyto analyze.
Puttingthesetogetheryieldsthe next lemma.

Lemma8 Chooseany > 0. If 3° s pi(z) > 7+ 1,
whee r > max(3,d) thenwith probability at least1 —

m—P —e~n/8,
202n
m | + .
r+1

2e|S
Il < 4o (hl 6L1'+§1n

Proof.  Let f(z) = pi(z) be the (fractional) weight

with whichz € S; is assignedo ,ui‘)). Obtainthe binary
weightsg(-) asin Lemmas; therefore)_ 5 g(z) > r.
As before,divide the coordinatesnto two groups,L and
R. We will considettheaveragesdy and Ag of thesetwo



partsseparately By Lemmas6 and7, with probability at
leastl —m 74,

H Zwesl

zESl
2€|Sl|

2
2ees)
ALl HGS—

rESl )
40? (1 dl m)
T

For Ag, if d = n thenAr = 0 andwe have nothingto
worry about. If d < n, write n —d = yn (Wherey €
[%,1]), and

IN

Zzesl f(z)zr d o2
E$651 f(.’L’) - N(07 t I’Yn);

wheret = (¥, f(@)2/(X, f(2)?) > ¥, f(@) (since
f(z) > f(z)?) andsot > r + 1. The chancethata

N(0, I,,) randomvariablehassquaredengthmorethan
2n is at moste—"/8. Therefore||Ag||> < 20°n/(r + 1)
with probability at least1 — e~"/#. To finish the lemma
notethatuy = (A, Ar), sol|uil|* = |ALll* + [|Ar[. 1

Agp =

Of coursewe cannotignorethe effect of pointsin S;,5 >
1,0n p§1> Accommodatingheseis straightforvard.

Lemma9 Choose any g3 € (0,1). As-
sumemin(c, ¢®)n'/?=* > 14, min(n, c*>n) > 18 + 81nn,
c?n > 512(8+1)lnm, m > max(4i?, 218¢*). Thenwith
probability at least1 — I(m 7 + e~"/%), for each center
estimate;ui1> € S; with mixingweightmore thanwr,

& 1coy/n.

llpgr " = il

In otherwords,to getreasonabhaccurateestimatesn the
first round,we setl = O(- ), andwe needc >

n=14, m > max(41?, 0(c™*)) ande*n > log 1.

6 Pruning

At the end of the first round of EM, let C; denotethe
centerestimatemriginally from S; which have high mix-

ing weight, thatis, C; = {u{" : u{” € 55wl >

wr}. A simpleclusteringheuristicdueto Hochbaumand
Shmaqys (1985),describedn Section3.3,is usedto choose
k pointsfrom U; C;.

Lemma10 If ¢2n > 81n12l andm > 40[ thenthe sets
C; obey thefollowing properties.
(a) Each C} is non-empty

(b) Theris areal value A > 0 sud thatif z € C; and
y,z € Cj (i # j) then|ly — 2|| < Aand|jz —y|| > A.

(c) Thepruningprocedueidentifiesexactlyonemembeiof
eat Cj.

Proof. () From Corollary 4 and Lemma5 we al-
ready know that [S;| > 2muw;, and that at most 2lw;
initial centerestimatesare chosenfrom S;. It was seen
in Lemma9 that eachpoint in S; gives weight at least
1 — le=¢’™/# to centerestimatedrom S;. It follows that
at the end of the first round of EM, at leastone of these
centerestimatesnusthave mixing weightatleast

3

Gmaw;) (1 — le=<*n/8)

3 2
== .(1—le“™® >
m%lw, 5l ( € )_wT

(underthe conditionson m, ), andthereforeC; cannotbe
empty

(b) Pickz € C; andy,z € C; for ary pairi # j. Then
lly—z|| < Aand||z—y|| > cijo/n—A whereA istwice
the precisionof the centerestimatesafter the first round
of EM. By theresultsof the previous sectionwe may set

A=leoyn.

(c) Thereare k true clustersand the pruning procedure
picksexactly k£ centerestimateslt will not pick two from
thesamerueclusterbecaus¢hesemustbeatdistance< A
from eachother whereasthere must be someuntouched
clustercontaininga centerestimateat distance> A from
all pointsselectedhusfar. 1

7 The secondround of EM

We now have one centerestimateﬁ§1> per true cluster
(for corveniencepermutetheir labelsto matchthe S;),

eachwith mixing weight + andcovariances¢2I,,, where
&1 = ¢, Furthermoreeachji{" is within distance
%ca\/ﬁ of thecorrespondingrue Gaussiarcenteru;. Such
favorablecircumstancesvill make it easyto show thatthe
subsequentoundof EM will achiese nearperfectcluster

ing. Thedetailsaresimilarto thoseof thefirstroundof EM

andare omittedfrom this abstract.Combiningthe various
resultssofar givesTheoreml.

We canalsoboundthe final mixing weightsandvariance.
Hereis anexample.

Lemma 11 To the resultsof Theoem1 it can be added
thatfor anys,

@ (1 _ke—czn/S) < wgz) < @ +e—c2n/8
m m

8 The caseof differ ent spherical covariance
matrices

A few changeseedto be madewhenthe datais dravn
from amixturew N (u1, 03 1,) + -+ - + wp N (g, 021, in
whichtheo; mightnotbeidentical.In thealgorithmitself,
therearetwo changes.



Initialization Pick initial centersand mixing weightsas
before.For initial estimate®f thevariancesise

o = = min |Iu{” - u" .

L Y

EM Runoneroundof EM, asbefore,to getthe modified
estimategi{"’, o), w ",

Pruning Again remove centerestimateswith weight be-
low wr. Theonly differencein the remainderof the
pruningproceduras thatthedistanceébetweercenters
pi” andy{" is now weightedby the individual vari-
ances,

i — 5]
(", pit) = =i
UZ{O) + UJ(-O)

1 Yy

EM Onelaststepof EM, asbefore.

The modified distancemeasurein the pruning step is
meant,roughly, to compensatéor the factthat part of the

distancebetweenuf) and,u§t> is on a scaleof a§t> while

partof it is onascaleof ot Theanalysidollows roughly
the sameoutline asbefore,with afew extra subtleties.An
additionalassumptions needed,

¢;; max(o;,03) > |o; — o3| foralli, j,
in orderto rule out situationsin which oneclusteris nested
within another The final theoremremainsthe same,the
error||u§2> — u;|| now beingproportionalto o; insteadof
to thecommono of the previouscase.

9 Concluding remarks

This paperprovidesprincipledanswerdo mary questions
surroundingeM: how mary clustersshouldbe used,how

the parametersught to be initialized, and how pruning
shouldbecarriedout. Someof theintuition presentedhere
confirmscurrentpractice;someof it is new. Eitherway;,

this materialshouldbe of interestto practitionersof EM.

But whataboutthe claim thatEM canbe madeto work in
justtwo rounds?This requireswhatwe call the

Strong Gaussianassumption. Thedataarei.i.d. samples
from atrue mixture of Gaussians.

Thisassumptioris the standardsettingfor othertheoretical
resultsaboutEM, but is it reasonabléo expectof realdata
setsAVe recommendnsteadthe

Weak Gaussianassumption. Thedatalookslike it comes
from amixture of Gaussiang thefollowing sensefor ary
spheran R™, thefractionof thedatathatfallsin thesphere

is theexpectedractionunderthemixturedistribution, +eq,
whereg is sometermcorrespondingo samplingerrorand
will typically be proportionalto m~'/2, wherem is the
numberof samples.Someotherconceptclassof low VC
dimensioncanbe substitutedor spheres.

The strongassumptionimmediatelyimplies the weak as-
sumption (with high probability) by a large deviation

bound,sincethe conceptclassof spheresn R” hassmall

VC dimension Whatkindsof conclusiongollow from the

strongassumptiorbut nottheweakone?Hereis anexam-

ple: “if two datapointsaredravn from N (0, I,,) thenwith

overwhelmingprobabilitythey areseparatedby a distance
of at least/n”. The weak assumptiordoesnot support
this; with just two samplesjn fact, the samplingerror is

so high that it doesnot allow us to drav any non-trivial

conclusionstall.

It is often arguedthat the Gaussianis the most natural
model of a clusterbecauseof the centrallimit theorem.
However, centrallimit theoremsspecificallyBerry-Esgen
theoremgFeller, 1966),yield Gaussiang thesenseof the
weak assumptionnot the strongone. For the samerea-
son,the weak Gaussiarassumptiorarisesnaturallywhen
we take randomprojectionsof mixturesof productdistri-
butions(DiaconisandFreedman1984). Ideally therefore,
we could provide performanceguaranteegor EM under
just this condition. Perhapsour analysiscanbe extended
appropriatelyFor anexampleof whatneedgo bechanged
in thealgorithm,consideithatthe weakassumptiorallows
+/m out of m datapointsto be placedarbitrarily. An out-
lier removal proceduremight be necessaryo preventEM
from beingconfusedoy this possiblymaliciousnoise.
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