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Overview
• Opportunity to work on an interesting DB system 

implementation project
– Doesn’t have to be a relational database project
– Can include object databases, XML databases, real-

time databases, etc.
– Should be focused on DB system implementation

• 9 unit course (1-8-0)
– One hour of lecture/discussion each week

• Some weeks will focus on project presentations
• Lectures for other weeks, focusing on RDBMS impl.

– Rest of time each week is focused on design and 
implementation of your project

• Need a status update every week



Overview (2)
• General process:

– Write a proposal and design document for project
– Dive into research, then implementation and testing
– At end of term, give a presentation/demo of your work

• Projects can be multi-person
– Problem scope must be scaled appropriately to 

number of people
• Projects must have measurable goals

– Tests that demonstrate correctness/functionality
– Performance or load tests to demonstrate scaling
– Try to include a simple demo of these tests in your 

final presentation



Project Schedule
• Week 1:  Write your project proposal

– 1-2 pages describing what you want to do
– Specify measurable goals!

• Weeks 2-3:  Research, design document
– Specify how you will implement your project

• Language, platform, how you will demonstrate completion
– Complete draft due at end of week 2
– Revisions and schedule due at end of week 3

• Weeks 4-10:  Implementation and testing
– Each week:  5-minute status update in class
– Week 5:  brief presentation of project and status
– Week 10:  more in-depth presentation of results



Grading
• Course is on grades, but P/F is an option
• Final grade will be based on:

– Design document
– Mid-term presentation
– Final presentation
– Actual project code quality and functionality

• Success depends on you!
– Lectures won’t necessarily focus on your project’s 

details
– You will need to spend time researching your idea 

and designing your project
– A good opportunity for you to practice these skills



Relational Database Architecture

• A general architecture for RDBMSes:
– Diagram is not complete
– Other components as well

• Most DBs have separate
paths for DDL, DML
– DDL involves simple

manipulation of table
schemas, etc.

– DML requires more
complicated machinery Table
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RDBMS Architecture (2)
• Data is usually stored in disk files

– (Small DBMSes might only use memory)
– File format is driven by

specific purpose of file
– Virtually all data files are

read/written using pages
• Page/block size usually

between 4KB and 64KB
– Data dictionary stored in

same way as table data,
to simplify management

– Tuple abstractions, etc. are
provided to query evaluator Table
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RDBMS Architecture (3)
• Data files manipulated by file manager

– File access usually largest
performance bottleneck

– Buffer manager caches
disk pages in memory to
minimize file reads

– Dramatically improves
query performance

– Also affects concurrency
control and recovery!

– File manager must provide
a way to flush files to disk Table
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RDBMS Architecture (4)
• Query evaluation pipeline

– Parsing SQL and converting to
execution plan is simple

– Planner/optimizer is critical!
– Most SQL queries have many

ways of being evaluated
• Order of selects, projects, etc.
• Join order, join strategies
• Rewriting subqueries as joins

plus grouping/aggregation
– Must pick a good query

plan, really quickly Table
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RDBMS Architecture (5)
• Query evaluation engine

– Mostly straightforward component
• Complexities arise from:

– Correlated subqueries
– Derived relations that need to

be temporarily materialized
• Handle updates and deletes

using same pipeline
– Recast updates, deletes as

“select for update” and
“select for deletion” Table
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RDBMS Architecture (6)
• Transaction processing and recovery

– DBMSes have big requirements for
consistency and durability

– In event of failures, DB must be
restored to a consistent state

– Transaction manager logs all
[DML] operations

– If a failure occurs, recovery
manager can use transaction
logs to restore a consistent
state

– Logging adds overhead, but
this can be mitigated using
checkpoints
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Concurrency Control
• Whether an RDBMS is single-user or multi-user 

has a large impact
• Single-user databases are much simpler

– Only need to keep a single version of all data
– No concurrency control, no lock management
– Transaction processing is much simpler

• Multi-user databases require much more 
machinery
– MVCC is most common storage technique
– Concurrency control and lock management become 

critical
– Transaction isolation must be managed carefully



Concurrency Control (2)
• Multi-user databases often

follow a structure like this:
• All state must be shared

across processes
• Server processes must

coordinate reads/writes,
transactions and locking
– Sometimes done with separate

processes, but not always
• Performance must be

managed carefully
– Resource usage in concurrent

server processes also important
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Example Project Ideas
• Write a file manager to store tuples on disk

– Support variable-size tuples
– Support single-version or MVCC records
– Implement simple selects, inserts, updates, deletes 

against a single table
– Write a simple buffer manager to cache page access

• Implement several kinds of index files
– B-tree index, hash index
– Provide APIs for common operations

• e.g. start-scan, get-next, find, find-first, find-last, etc.
– Handle index-update operations too!

• add/delete index record, compact index, etc.



Example Project Ideas (2)
• Don’t need to limit yourself to only data files

– Can write an in-memory database system that doesn’t 
require data files, storage formats, etc.

• Write a query executor for in-memory data
– Parse simple SQL DML commands and generate 

execution plans to evaluate
– Implement plan nodes for sequential scans, sorting, 

grouping/aggregation, joins
– Use a heuristic-driven plan optimizer
– Experiment with different strategies, measure 

performance



Example Project Ideas (3)
• Write a cost-based query planner/optimizer

– Take simple, unoptimized execution plans as input
• Will need an appropriate representation of query plan nodes

– Output optimized execution plans, along with 
associated cost measure

– Need to properly cost different plan nodes
• Use (faked) table statistics to choose optimal plans
• Take CPU, memory, disk requirements into account
• Add support for distributed query planning; take network 

bandwidth into account
– Integrate a mechanism for limiting search effort of 

optimizer



Example Project Ideas (4)

• Write a simple relational database with a front-
end other than SQL
– e.g. a Datalog-type language modeled after one of 

the relational calculi
– Explore strategies for correct and efficient evaluation

• Could focus project on specific problem domain
– Allowing easy statement of recursive or time-based 

queries
– Easy statement of OLAP queries and computed 

results



Minibase
• Minibase is a simple RDBMS implementation

– Specifically designed for educational use
http://www.cs.wisc.edu/~dbbook/openAccess/Minibase/minibase.html

• Actually two RDBMS implementations
• C++ impl. provides many basic features

– SQL parser, optimizer, buffer manager
– Heap files for tuple storage
– B+ tree index implementation

• Java impl. provides only lower-level features
– No SQL parsing or planning/optimization provided

http://www.cs.wisc.edu/~dbbook/openAccess/Minibase/minibase.html


Minibase (2)

• Could build a project on top of Minibase
– Implement your own version of one of its 

components
• Implement a buffer manager
• Implement several join algorithms that actually 

work with disk files
– Add some new features

• Build a SQL front-end for Java Minibase impl.
• Implement transaction support using a write-ahead 

log and checkpoints



Other Project Ideas

• Could also take an existing database system 
and enhance it in some way
– Actually modify the internals of the DBMS
– Build an external component that integrates with the 

DBMS to extend its functionality
• Look at open-source database impls

– Apache Derby (formerly IBM Cloudscape)
– PostgreSQL, MySQL
– HSQLDB
– …



Next Steps
• Monday, April 2:

– Let me know if you are taking the class
– If so, briefly describe your project ideas

• Wednesday, April 4:
– 1st draft of project proposal/design doc is due

• Should include:
– Clear statement of project focus
– General implementation details, e.g. language, 

platform, file-based vs. in-memory, other details
– Measurable goals you intend to achieve
– Include references to papers, books, websites you will 

use to guide you
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