
Database System
Implementation Project

CS101 Section 3
Spring 2006-2007

Overview
• Opportunity to work on an interesting DB system

implementation project
– Doesn’t have to be a relational database project
– Can include object databases, XML databases, real-

time databases, etc.
– Should be focused on DB system implementation

• 9 unit course (1-8-0)
– One hour of lecture/discussion each week

• Some weeks will focus on project presentations
• Lectures for other weeks, focusing on RDBMS impl.

– Rest of time each week is focused on design and
implementation of your project

• Need a status update every week

Overview (2)
• General process:

– Write a proposal and design document for project
– Dive into research, then implementation and testing
– At end of term, give a presentation/demo of your work

• Projects can be multi-person
– Problem scope must be scaled appropriately to

number of people
• Projects must have measurable goals

– Tests that demonstrate correctness/functionality
– Performance or load tests to demonstrate scaling
– Try to include a simple demo of these tests in your

final presentation

Project Schedule
• Week 1: Write your project proposal

– 1-2 pages describing what you want to do
– Specify measurable goals!

• Weeks 2-3: Research, design document
– Specify how you will implement your project

• Language, platform, how you will demonstrate completion
– Complete draft due at end of week 2
– Revisions and schedule due at end of week 3

• Weeks 4-10: Implementation and testing
– Each week: 5-minute status update in class
– Week 5: brief presentation of project and status
– Week 10: more in-depth presentation of results

Grading
• Course is on grades, but P/F is an option
• Final grade will be based on:

– Design document
– Mid-term presentation
– Final presentation
– Actual project code quality and functionality

• Success depends on you!
– Lectures won’t necessarily focus on your project’s

details
– You will need to spend time researching your idea

and designing your project
– A good opportunity for you to practice these skills

Relational Database Architecture

• A general architecture for RDBMSes:
– Diagram is not complete
– Other components as well

• Most DBs have separate
paths for DDL, DML
– DDL involves simple

manipulation of table
schemas, etc.

– DML requires more
complicated machinery Table

Data
Txn
Logs

Data
Dictionary

Table
Indexes

file manager
buffer manager

DDL
interpreter

DML parser

planner and
optimizer

query
evaluator

transaction
manager

RDBMS Architecture (2)
• Data is usually stored in disk files

– (Small DBMSes might only use memory)
– File format is driven by

specific purpose of file
– Virtually all data files are

read/written using pages
• Page/block size usually

between 4KB and 64KB
– Data dictionary stored in

same way as table data,
to simplify management

– Tuple abstractions, etc. are
provided to query evaluator Table

Data
Txn
Logs

Data
Dictionary

Table
Indexes

file manager
buffer manager

DDL
interpreter

DML parser

planner and
optimizer

query
evaluator

transaction
manager

RDBMS Architecture (3)
• Data files manipulated by file manager

– File access usually largest
performance bottleneck

– Buffer manager caches
disk pages in memory to
minimize file reads

– Dramatically improves
query performance

– Also affects concurrency
control and recovery!

– File manager must provide
a way to flush files to disk Table

Data
Txn
Logs

Data
Dictionary

Table
Indexes

file manager
buffer manager

DDL
interpreter

DML parser

planner and
optimizer

query
evaluator

transaction
manager

RDBMS Architecture (4)
• Query evaluation pipeline

– Parsing SQL and converting to
execution plan is simple

– Planner/optimizer is critical!
– Most SQL queries have many

ways of being evaluated
• Order of selects, projects, etc.
• Join order, join strategies
• Rewriting subqueries as joins

plus grouping/aggregation
– Must pick a good query

plan, really quickly Table
Data

Txn
Logs

Data
Dictionary

Table
Indexes

file manager
buffer manager

DDL
interpreter

DML parser

planner and
optimizer

query
evaluator

transaction
manager

RDBMS Architecture (5)
• Query evaluation engine

– Mostly straightforward component
• Complexities arise from:

– Correlated subqueries
– Derived relations that need to

be temporarily materialized
• Handle updates and deletes

using same pipeline
– Recast updates, deletes as

“select for update” and
“select for deletion” Table

Data
Txn
Logs

Data
Dictionary

Table
Indexes

file manager
buffer manager

DDL
interpreter

DML parser

planner and
optimizer

query
evaluator

transaction
manager

RDBMS Architecture (6)
• Transaction processing and recovery

– DBMSes have big requirements for
consistency and durability

– In event of failures, DB must be
restored to a consistent state

– Transaction manager logs all
[DML] operations

– If a failure occurs, recovery
manager can use transaction
logs to restore a consistent
state

– Logging adds overhead, but
this can be mitigated using
checkpoints

Table
Data

Txn
Logs

Data
Dictionary

Table
Indexes

file manager
buffer manager

DDL
interpreter

DML parser

planner and
optimizer

query
evaluator

transaction
manager

Concurrency Control
• Whether an RDBMS is single-user or multi-user

has a large impact
• Single-user databases are much simpler

– Only need to keep a single version of all data
– No concurrency control, no lock management
– Transaction processing is much simpler

• Multi-user databases require much more
machinery
– MVCC is most common storage technique
– Concurrency control and lock management become

critical
– Transaction isolation must be managed carefully

Concurrency Control (2)
• Multi-user databases often

follow a structure like this:
• All state must be shared

across processes
• Server processes must

coordinate reads/writes,
transactions and locking
– Sometimes done with separate

processes, but not always
• Performance must be

managed carefully
– Resource usage in concurrent

server processes also important

buffer pool

log buffers

lock table

transaction
status table

query plan
cache

shared memory

client

server
process

client

server
process

client

server
process

disk files log files

Example Project Ideas
• Write a file manager to store tuples on disk

– Support variable-size tuples
– Support single-version or MVCC records
– Implement simple selects, inserts, updates, deletes

against a single table
– Write a simple buffer manager to cache page access

• Implement several kinds of index files
– B-tree index, hash index
– Provide APIs for common operations

• e.g. start-scan, get-next, find, find-first, find-last, etc.
– Handle index-update operations too!

• add/delete index record, compact index, etc.

Example Project Ideas (2)
• Don’t need to limit yourself to only data files

– Can write an in-memory database system that doesn’t
require data files, storage formats, etc.

• Write a query executor for in-memory data
– Parse simple SQL DML commands and generate

execution plans to evaluate
– Implement plan nodes for sequential scans, sorting,

grouping/aggregation, joins
– Use a heuristic-driven plan optimizer
– Experiment with different strategies, measure

performance

Example Project Ideas (3)
• Write a cost-based query planner/optimizer

– Take simple, unoptimized execution plans as input
• Will need an appropriate representation of query plan nodes

– Output optimized execution plans, along with
associated cost measure

– Need to properly cost different plan nodes
• Use (faked) table statistics to choose optimal plans
• Take CPU, memory, disk requirements into account
• Add support for distributed query planning; take network

bandwidth into account
– Integrate a mechanism for limiting search effort of

optimizer

Example Project Ideas (4)

• Write a simple relational database with a front-
end other than SQL
– e.g. a Datalog-type language modeled after one of

the relational calculi
– Explore strategies for correct and efficient evaluation

• Could focus project on specific problem domain
– Allowing easy statement of recursive or time-based

queries
– Easy statement of OLAP queries and computed

results

Minibase
• Minibase is a simple RDBMS implementation

– Specifically designed for educational use
http://www.cs.wisc.edu/~dbbook/openAccess/Minibase/minibase.html

• Actually two RDBMS implementations
• C++ impl. provides many basic features

– SQL parser, optimizer, buffer manager
– Heap files for tuple storage
– B+ tree index implementation

• Java impl. provides only lower-level features
– No SQL parsing or planning/optimization provided

http://www.cs.wisc.edu/~dbbook/openAccess/Minibase/minibase.html

Minibase (2)

• Could build a project on top of Minibase
– Implement your own version of one of its

components
• Implement a buffer manager
• Implement several join algorithms that actually

work with disk files
– Add some new features

• Build a SQL front-end for Java Minibase impl.
• Implement transaction support using a write-ahead

log and checkpoints

Other Project Ideas

• Could also take an existing database system
and enhance it in some way
– Actually modify the internals of the DBMS
– Build an external component that integrates with the

DBMS to extend its functionality
• Look at open-source database impls

– Apache Derby (formerly IBM Cloudscape)
– PostgreSQL, MySQL
– HSQLDB
– …

Next Steps
• Monday, April 2:

– Let me know if you are taking the class
– If so, briefly describe your project ideas

• Wednesday, April 4:
– 1st draft of project proposal/design doc is due

• Should include:
– Clear statement of project focus
– General implementation details, e.g. language,

platform, file-based vs. in-memory, other details
– Measurable goals you intend to achieve
– Include references to papers, books, websites you will

use to guide you

	Database System Implementation Project
	Overview
	Overview (2)
	Project Schedule
	Grading
	Relational Database Architecture
	RDBMS Architecture (2)
	RDBMS Architecture (3)
	RDBMS Architecture (4)
	RDBMS Architecture (5)
	RDBMS Architecture (6)
	Concurrency Control
	Concurrency Control (2)
	Example Project Ideas
	Example Project Ideas (2)
	Example Project Ideas (3)
	Example Project Ideas (4)
	Minibase
	Minibase (2)
	Other Project Ideas
	Next Steps

