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Auctions

Auctions

We consider combinatorial auctions of m items to n bidders where
we wish to maximize the social welfare.

The VCG mechanism can be used for truthfulness

An FPTAS can be used to approximate arbitrarily well

Can we achieve efficiency and truthfulness simultaneously?
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VCG Mechanisms

The VCG Mechanism

By participating in the auction, each bidder harms the others

80 80 80

To counter greed, each player is charged for this harm

Intuitively, the player wants the social welfare maximized
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VCG Mechanisms

Maximal-in-Range

The VCG mechanism allows for truth given exact solutions

For VCG to work, simply maximize W (a) over all allocations A

VCG works if we maximize W (r) over any R ⊆ A

These are exactly the types of algorithms for which VCG works

Example

Grouping all items into one lot, we can maximize over a range of
size n. This yields a 1/n approximation.
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VCG Mechanisms

MIR Example

By giving all items to one player, we do well when welfare is
concentrated

To do well when welfare is spread out, we can treat the
auction as unit demand and solve exactly

One of these gets at least a min(n, 2
√

m) approximation



Introduction Allocate All Our Work Conclusions

VCG Mechanisms

MIR Example

By giving all items to one player, we do well when welfare is
concentrated

To do well when welfare is spread out, we can treat the
auction as unit demand and solve exactly

One of these gets at least a min(n, 2
√

m) approximation



Introduction Allocate All Our Work Conclusions

VCG Mechanisms

MIR Example

By giving all items to one player, we do well when welfare is
concentrated

To do well when welfare is spread out, we can treat the
auction as unit demand and solve exactly

One of these gets at least a min(n, 2
√

m) approximation



Introduction Allocate All Our Work Conclusions

VCG Mechanisms

Proof of Approximation Ratio

We know that it gets at least n, so let’s see that we get 2
√

m

In an optimal allocation, bidders get ≤
√

m or >
√

m items

If most of the welfare goes to those with ≤
√

m items, the
unit allocation can get a

√
m approximation on each of them

If those with >
√

m items get more welfare, giving all items to
one bidder yields a

√
m approximation for the group
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The Model

The Model

Each bidder has a valuation function vi

For each item j , bidder i has a value vij

Each bidder i has a budget bi

For each subset S ⊆ [m] of the items,

vi (S) = min

∑
j∈S

vij , bi


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The Model

Example: Video Game Auction

Value: 40

Value: 60 Value: 80
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Background

Previous Work

Inapproximability for Combinatorial Public Projects (Schapira,
Singer, 2008)

n-bidder auctions can’t approximate better than (n + 1)/2n
(Mossel et al., 2009)

We show that n-bidder auctions can’t beat min(n,m1/2−ε)

The key to all of of these was VC dimension
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Background

VC Dimension

Consider a subset R ⊆ 2[m]

By restricting to S ⊂ [m], we get a new set RS

Example

If {2, 3, 5} ∈ R and S = {1, 2, 5}, then {2, 5} ∈ RS .

The VC dimension is size of the largest S such that RS = 2S

For 2-bidder auctions, this is like allocating S in every way
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Allocate All Items

Allocate All Items

Our work is based on a related proof for an easier case

In auctions, items can be given to bidders or retained

The social welfare is never harmed by giving out more items

Doing so might result in not being maximal-in-range
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Allocate All Items

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

Let M maximize value with item 1, retain item 2

Create M′ by then giving item 2 to bidder 1

Valuations

Bidder 1 has value 2 for either item and budget 2

Bidder 2 has value 1 for either item and budget 1

M gives item 1 to bidder 1

so M′ gives both items to bidder 1

but M′ has a range that includes giving each bidder one item
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Large Range

Allocation Vectors

We start by looking at 2-bidder MIR allocate all mechanisms

Associate a vector in [2]m with each allocation

1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3

Associate a valuation function with each vector in [2]m

1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3

All values are 1 or 0, budgets are infinite

Social welfare is just how well the vectors match
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Large Range

Large Range

Fix an allocation r in the range

Pick a random value vector v

In expectation, r will achieve social welfare m/2

By Chernoff bounds, m(1/2 + ε) is exponentially unlikely

So it takes an exponentially large range to do well on all v
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VC Dimension

VC Dimension

Since |R| = 2αm, R has VC dimension δm (Sauer’s lemma)

So there is a subset of δm items on which we can solve exactly

Using this subset as advice, we can solve welfare maximization

So approximating to 1/2 + ε is impossible unless NP ⊆ P/poly
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The Issues

So what’s the problem?

We can’t assume all items are allocated

So we focus in on some items where it’s close to true

VC dimension doesn’t generalize well to more than 2 bidders

So we form a meta-bidder out of all but one of the bidders
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Large Range

Coverings

Suppose we have an approximation ratio of 1/n + ε

For every v ∈ [n]m, some r ∈ R matches (1/n + ε)m indices

v = 122221112212

r = 111221012210

For each S , TS projects R to S

TS filters out r ∈ R such that any s ∈ S is unassigned

t ∈ TS covers v if it is the projection of v to S
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Large Range

Coverings Continued

If we fix |S |, each v ∈ [n]m is covered
((1/n+ε)m

|S|
)

times

v = 122221112212

r = 111221012210

Each t ∈ TS covers nm−|S| valuations

v = ∗ ∗ ∗2 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗

So if

ncm

(
m

|S |

)
nm−|S | < nm

(
(1/n + ε)m

|S |

)
,

there must be a TS of size greater than ncm
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Large Range

Where are we now?

So we not only have a large range, but by focusing in on S , we
have a large range that allocates all items.

Next, we deal with the difficulty of using the VC dimension with
more than two bidders.
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VC Dimension

Using Sauer’s lemma requires an exponential subset of [2]m

We have an exponential subset of [n]m

This is a problem, as [2]m ⊂ [n]m has exponential size but VC
dimension 0

Solution: Map [n]m → [2]nm

231142

010000101000100000010100
1 means i gets it, 0 means someone else does

By sacrificing a factor of n, we can fix i
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VC Dimension

Now what do we know?

So we now see that the large range means that the range solves
exactly over an auction with 2 bidders, one corresponding to a
special bidder i and the rest forming a meta-bidder.

We do not know that this auction is hard yet, however, as the
meta-bidder has a restricted class of valuations.
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Embedding Subset Sum

Let a1, . . . , am be a subset sum instance with target τ

The meta-bidder has b =∞, vj = aj

For bidder i , b = 2τ , vj = 2aj

A subset sums to τ iff we get welfare
∑

j aj + τ
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Subset Sum

Done

So if a maximal-in-range mechanism approximates the social
welfare better than min(n,m1/2−ε), subset sum has polynomial
circuits.
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Conclusions and Open Problems

We showed that for any poly-bounded n, no poly-time MIR
mechanism can beat min(n,m1/2−ε)

This essentially solves the problem, as a min(n, 2
√

m)
approximation exists.

The more general question of how well truthful mechanisms
can perform is left open
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