▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

A Combinatorial Look at Auctions

Dave Buchfuhrer Chris Umans

October 9, 2009

Outline

- Introduction
 - Auctions
 - VCG Mechanisms
 - The Model
 - Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

Our Work

- The Issues
- Large Range
- VC Dimension

(日) (문) (문) (문) (문)

Subset Sum

Outline

Introduction

Auctions

- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction o●ooooooooooo	Allocate All	Our Work 00000000000	Conclusions
Auctions			
Auctions			

We consider combinatorial auctions of m items to n bidders where we wish to maximize the social welfare.

- The VCG mechanism can be used for truthfulness
- An FPTAS can be used to approximate arbitrarily well
- Can we achieve efficiency and truthfulness simultaneously?

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction	Allocate All	Our Work 00000000000	Conclusions
VCG Mechanisms			
The VCC Mer	shanism		

• By participating in the auction, each bidder harms the others

Introduction	Allocate All	Our Work	Conclusions
00000000000			
VCG Mechanisms			

The VCG Mechanism

• By participating in the auction, each bidder harms the others

Introduction	Allocate All	Our Work	Conclusions
000000000000			
VCG Mechanisms			

The VCG Mechanism

• By participating in the auction, each bidder harms the others

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Allocate All	Our Work	Conclusions
00000000000			
VCG Mechanisms			

The VCG Mechanism

• By participating in the auction, each bidder harms the others

• Intuitively, the player wants the social welfare maximized

Introduction	Allocate All 00000000	Our Work	Conclusions
VCG Mechanisms			
Maximal-in-R	ange		

• For VCG to work, simply maximize W(a) over all allocations A

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Allocate All 00000000	Our Work 00000000000	Conclusions
VCG Mechanisms			
Maximal-in-Rang	ge		

• For VCG to work, simply maximize W(a) over all allocations A

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• VCG works if we maximize W(r) over any $R \subseteq A$

Introduction	Allocate All 0000000	Our Work 00000000000	Conclusions
VCG Mechanisms			
Maximal-in-Ra	inge		

- For VCG to work, simply maximize W(a) over all allocations A
- VCG works if we maximize W(r) over any $R \subseteq A$
- These are exactly the types of algorithms for which VCG works

Introduction	Allocate All	Our Work 00000000000	Conclusions
VCG Mechanisms			
Maximal-in-R	ange		

- For VCG to work, simply maximize W(a) over all allocations A
- VCG works if we maximize W(r) over any $R \subseteq A$
- These are exactly the types of algorithms for which VCG works

Example

Grouping all items into one lot, we can maximize over a range of size *n*. This yields a 1/n approximation.

Introduction	Allocate All 00000000	Our Work 00000000000	Conclusions
VCG Mechanisms			
MIR Example			

• By giving all items to one player, we do well when welfare is concentrated

Introduction	Allocate All	Our Work	Conclusions
00000000000			
VCG Mechanisms			
MIR Example			

• By giving all items to one player, we do well when welfare is concentrated

• To do well when welfare is spread out, we can treat the auction as unit demand and solve exactly

Introduction	Allocate All	Our Work	Conclusions
00000000000			
VCG Mechanisms			
MIR Example			

- By giving all items to one player, we do well when welfare is concentrated
- To do well when welfare is spread out, we can treat the auction as unit demand and solve exactly
- One of these gets at least a $\min(n, 2\sqrt{m})$ approximation

Introduction	Allocate All	Our Work	Conclusions
00000000000			
VCG Mechanisms			

Proof of Approximation Ratio

We know that it gets at least *n*, so let's see that we get $2\sqrt{m}$

• In an optimal allocation, bidders get $\leq \sqrt{m}$ or $> \sqrt{m}$ items

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Allocate All

Our Work

Conclusions

VCG Mechanisms

Proof of Approximation Ratio

We know that it gets at least *n*, so let's see that we get $2\sqrt{m}$

- In an optimal allocation, bidders get $\leq \sqrt{m}$ or $> \sqrt{m}$ items
- If most of the welfare goes to those with $\leq \sqrt{m}$ items, the unit allocation can get a \sqrt{m} approximation on each of them

Introduction

Allocate All

Our Work

VCG Mechanisms

Proof of Approximation Ratio

We know that it gets at least *n*, so let's see that we get $2\sqrt{m}$

- In an optimal allocation, bidders get $\leq \sqrt{m}$ or $> \sqrt{m}$ items
- If most of the welfare goes to those with $\leq \sqrt{m}$ items, the unit allocation can get a \sqrt{m} approximation on each of them
- If those with $> \sqrt{m}$ items get more welfare, giving all items to one bidder yields a \sqrt{m} approximation for the group

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction	Allocate All	Our Work 00000000000	Conclusions
The Model			
The Model			

- Each bidder has a valuation function v_i
- For each item *j*, bidder *i* has a value *v_{ij}*
- Each bidder *i* has a budget *b_i*
- For each subset $S \subseteq [m]$ of the items,

$$v_i(S) = \min\left(\sum_{j \in S} v_{ij}, b_i\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Allocate All	Our Work	Conclusions
000000000000000			
The Model			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: Video Game Auction

Value: 40

Introduction

Allocate Al

Our Work

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Model

Example: Video Game Auction

Value: 40

Value: 60

Introduction

Allocate All

Our Work

Conclusions

The Model

Example: Video Game Auction

Value: 40

Value: 60

Value: 80

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction ○○○○○○○○○●○	Allocate All 0000000	Our Work 00000000000	Conclusions
Background			
Previous Work			

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- *n*-bidder auctions can't approximate better than (n + 1)/2n (Mossel et al., 2009)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Allocate All 00000000	Our Work 00000000000	Conclusions
Background			
Previous Work			

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- *n*-bidder auctions can't approximate better than (n + 1)/2n (Mossel et al., 2009)
- We show that *n*-bidder auctions can't beat $\min(n, m^{1/2-\epsilon})$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction ○○○○○○○○○●○	Allocate All 00000000	Our Work 00000000000	Conclusions
Background			
Previous Work			

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- *n*-bidder auctions can't approximate better than (n + 1)/2n (Mossel et al., 2009)
- We show that *n*-bidder auctions can't beat $\min(n, m^{1/2-\epsilon})$

• The key to all of of these was VC dimension

Introduction ○○○○○○○○○○●	Allocate All 00000000	Our Work 00000000000	Conclusions
Background			
VC Dimension			

- Consider a subset $R \subseteq 2^{[m]}$
- By restricting to $S \subset [m]$, we get a new set R_S

Example

If $\{2,3,5\} \in R$ and $S = \{1,2,5\}$, then $\{2,5\} \in R_S$.

• The VC dimension is size of the largest S such that $R_S = 2^S$

• For 2-bidder auctions, this is like allocating S in every way

Outline

- Auctions
- VCG Mechanisms
- The Model
- Background

2 Allocate All

- Allocate All Items
- Large RangeVC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction	Allocate All	Our Work	Conclusions
00000000000000	0000000	00000000000	
Allocate All Items			
Allocate All It	ems		

Our work is based on a related proof for an easier case

- In auctions, items can be given to bidders or retained
- The social welfare is never harmed by giving out more items

• Doing so might result in not being maximal-in-range

Introduction	Allocate All	Our Work	Conclusions
	000000		
Allocate All Items			

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- \bullet Let ${\mathcal M}$ maximize value with item 1, retain item 2
- \bullet Create \mathcal{M}' by then giving item 2 to bidder 1

Introduction 000000000000	Allocate All	Our Work 0000000000	Conclusions
Allocate All Items			

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- \bullet Let ${\mathcal M}$ maximize value with item 1, retain item 2
- Create \mathcal{M}' by then giving item 2 to bidder 1

Valuations

- Bidder 1 has value 2 for either item and budget 2
- Bidder 2 has value 1 for either item and budget 1

Introduction 000000000000	Allocate All	Our Work 0000000000	Conclusions
Allocate All Items			

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- \bullet Let ${\mathcal M}$ maximize value with item 1, retain item 2
- Create \mathcal{M}' by then giving item 2 to bidder 1

Valuations

- Bidder 1 has value 2 for either item and budget 2
- Bidder 2 has value 1 for either item and budget 1

- \mathcal{M} gives item 1 to bidder 1
- so \mathcal{M}' gives both items to bidder 1

Introduction 000000000000	Allocate All	Our Work 0000000000	Conclusions
Allocate All Items			

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- \bullet Let ${\mathcal M}$ maximize value with item 1, retain item 2
- Create \mathcal{M}' by then giving item 2 to bidder 1

Valuations

- Bidder 1 has value 2 for either item and budget 2
- Bidder 2 has value 1 for either item and budget 1
- $\mathcal M$ gives item 1 to bidder 1
- so \mathcal{M}' gives both items to bidder 1
- $\bullet\,$ but \mathcal{M}' has a range that includes giving each bidder one item

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background

2 Allocate All

- Allocate All Items
- Large Range
- VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions
Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions
Large Range			
Allocation Ve	ctors		

- Associate a vector in [2]^m with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions
Large Range			
Allocation Ve	ctors		

- Associate a vector in [2]^m with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2]^m
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3

Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions	
Large Range				
Allocation Vectors				

- Associate a vector in [2]^m with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2]^m
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3

• All values are 1 or 0, budgets are infinite

Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions	
Large Range				
Allocation Vectors				

- Associate a vector in [2]^m with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2]^m
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3

- All values are 1 or 0, budgets are infinite
- Social welfare is just how well the vectors match

Introduction 000000000000	Allocate All ○○○○○●○○	Our Work 00000000000	Conclusions
Large Range			
Large Range			

- Fix an allocation r in the range
- Pick a random value vector v

Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions
Large Range			
Large Range			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare m/2

Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions
Large Range			
Large Range			

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare m/2
- By Chernoff bounds, $m(1/2 + \epsilon)$ is exponentially unlikely

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions
Large Range			
Large Range			

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare m/2
- By Chernoff bounds, $m(1/2 + \epsilon)$ is exponentially unlikely
- So it takes an exponentially large range to do well on all v

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background

2 Allocate All

- Allocate All Items Large Range
- VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction	Allocate All	Our Work	Conclusions
	0000000		
VC Dimension			
VC Dimension			

• Since $|R| = 2^{\alpha m}$, R has VC dimension δm (Sauer's lemma)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

VC Dimension			
VC Dimension			
Introduction 000000000000	Allocate All	Our Work 00000000000	Conclusions

- Since $|R| = 2^{\alpha m}$, R has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000000000	Allocate All ○○○○○○●	Our Work 00000000000	Conclusions
VC Dimension			
VC Dimensior	I		

- Since $|R| = 2^{\alpha m}$, R has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly
- Using this subset as advice, we can solve welfare maximization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000000000	Allocate All ○○○○○○●	Our Work 00000000000	Conclusions
VC Dimension			
VC Dimension	ı		

- Since $|R| = 2^{\alpha m}$, R has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly
- Using this subset as advice, we can solve welfare maximization
- So approximating to $1/2 + \epsilon$ is impossible unless $NP \subseteq P/poly$

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension
- 3 Our Work
 - The Issues
 - Large Range
 - VC Dimension

Subset Sum

4 Conclusions

So what's the	problem?		
The Issues			
Introduction 000000000000	Allocate All	Our Work o●oooooooooo	Conclusions

<□ > < @ > < E > < E > E のQ @

• We can't assume all items are allocated

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
The Issues			
So what's the	problem?		

- We can't assume all items are allocated
- So we focus in on some items where it's close to true

Introduction 000000000000	Allocate All 00000000	Our Work o●ooooooooo	Conclusions
The Issues			
So what's the	e problem?		

- We can't assume all items are allocated
- So we focus in on some items where it's close to true
- VC dimension doesn't generalize well to more than 2 bidders

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

So what's the	e problem?		
The Issues			
Introduction 000000000000	Allocate All 00000000	Our Work o●oooooooooo	Conclusions

- We can't assume all items are allocated
- So we focus in on some items where it's close to true
- VC dimension doesn't generalize well to more than 2 bidders

• So we form a meta-bidder out of all but one of the bidders

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension
- Our Work
 - The Issues
 - Large Range
 - VC Dimension

Subset Sum

4 Conclusions

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings			

- Suppose we have an approximation ratio of $1/n + \epsilon$
- For every $v \in [n]^m$, some $r \in R$ matches $(1/n + \epsilon)m$ indices

$$v = 122221112212$$

$$r = 111221012210$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings			

- Suppose we have an approximation ratio of $1/n + \epsilon$
- For every $v \in [n]^m$, some $r \in R$ matches $(1/n + \epsilon)m$ indices

$$v = 122221112212$$

 $r = 111221012210$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
Large Range			
Coverings			

- Suppose we have an approximation ratio of $1/n + \epsilon$
- For every $v \in [n]^m$, some $r \in R$ matches $(1/n + \epsilon)m$ indices

$$v = 122221112212$$

 $r = 111221012210$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For each S, T_S projects R to S

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
Large Range			
Coverings			

- Suppose we have an approximation ratio of $1/n + \epsilon$
- For every $v \in [n]^m$, some $r \in R$ matches $(1/n + \epsilon)m$ indices

v = 12211221r = 12211221

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For each S, T_S projects R to S

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings			

- Suppose we have an approximation ratio of $1/n + \epsilon$
- For every $v \in [n]^m$, some $r \in R$ matches $(1/n + \epsilon)m$ indices

$$v = 12211221$$

 $r = 12211221$

- For each S, T_S projects R to S
- T_S filters out $r \in R$ such that any $s \in S$ is unassigned

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings			

- Suppose we have an approximation ratio of $1/n + \epsilon$
- For every $v \in [n]^m$, some $r \in R$ matches $(1/n + \epsilon)m$ indices

$$v = 12211221$$

 $t = 12211221$

- For each S, T_S projects R to S
- T_S filters out $r \in R$ such that any $s \in S$ is unassigned
- $t \in T_S$ covers v if it is the projection of v to S

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings Cou	ntinued		

 \circ

$$v = 122221112212$$

$$r = 111221012210$$

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
Large Range			
Coverings Co	ntinued		

$$v = 122221112212$$

$$r = 111221012210$$

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings Co	ntinued		

$$v = 122221112212$$

$$r = 111221012210$$

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
Large Range			
Coverings Continued			

$$v = 122221112212$$

$$r = 111221012210$$

Introduction 000000000000	Allocate All 00000000	Our Work ○○○○●○○○○○○	Conclusions
Large Range			
Coverings Con	tinued		

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

• Each
$$t \in T_S$$
 covers $n^{m-|S|}$ valuations

$$v = * * * 2 * * * 1 * * * *$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings Co	ntinued		

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

$$v = * * * 2 * * * 1 * * * *$$

So if

$$n^{cm}\binom{m}{|S|}n^{m-|S|} < n^m\binom{(1/n+\epsilon)m}{|S|},$$

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings Co	ntinued		

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

$$v = * * * 2 * * * 1 * * * *$$

So if

$$n^{cm}\binom{m}{|S|}n^{m-|S|} < n^m\binom{(1/n+\epsilon)m}{|S|},$$

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions	
Large Range				
Coverings Continued				

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

$$v = * * * 2 * * * 1 * * * *$$

So if

$$n^{cm}\binom{m}{|S|}n^{m-|S|} < n^m\binom{(1/n+\epsilon)m}{|S|},$$

Coverings Continued				
Large Range				
Introduction 000000000000	Allocate All	Our Work	Conclusions	

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

$$v = * * * 2 * * * 1 * * * *$$

So if

$$n^{cm}\binom{m}{|S|}n^{m-|S|} < n^{m}\binom{(1/n+\epsilon)m}{|S|},$$

Coverings Continued				
Large Range				
Introduction 000000000000	Allocate All	Our Work	Conclusions	

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

$$v = * * * 2 * * * 1 * * * *$$

So if

$$n^{cm}\binom{m}{|S|}n^{m-|S|} < n^m\binom{(1/n+\epsilon)m}{|S|},$$

Introduction 000000000000	Allocate All	Our Work	Conclusions
Large Range			
Coverings Co	ntinued		

• If we fix
$$|S|$$
, each $v \in [n]^m$ is covered $\binom{(1/n+\epsilon)m}{|S|}$ times

$$v = 122221112212$$

 $r = 111221012210$

$$v = * * * 2 * * * 1 * * * *$$

So if

$$n^{cm}\binom{m}{|S|}n^{m-|S|} < n^m\binom{(1/n+\epsilon)m}{|S|},$$
Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
Large Range			
Where are we	now?		

So we not only have a large range, but by focusing in on S, we have a large range that allocates all items.

Next, we deal with the difficulty of using the VC dimension with more than two bidders.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

4 Conclusions

Introduction 000000000000	Allocate All 00000000	Our Work ○○○○○○●○○○○	Conclusions
VC Dimension			
VC Dimension			

- Using Sauer's lemma requires an exponential subset of $[2]^m$
- We have an exponential subset of $[n]^m$
- This is a problem, as [2]^m ⊂ [n]^m has exponential size but VC dimension 0

Introduction 000000000000	Allocate All 00000000	Our Work ○○○○○○●●○○○○	Conclusions
VC Dimension			
VC Dimension			

- Using Sauer's lemma requires an exponential subset of $[2]^m$
- We have an exponential subset of $[n]^m$
- This is a problem, as [2]^m ⊂ [n]^m has exponential size but VC dimension 0
- Solution: Map $[n]^m \rightarrow [2]^{nm}$

Introduction 000000000000	Allocate All 00000000	Our Work ○○○○○○●●○○○○	Conclusions
VC Dimension			
VC Dimension			

- Using Sauer's lemma requires an exponential subset of $[2]^m$
- We have an exponential subset of $[n]^m$
- This is a problem, as [2]^m ⊂ [n]^m has exponential size but VC dimension 0
- Solution: Map $[n]^m \rightarrow [2]^{nm}$

• 1 means i gets it, 0 means someone else does

Introduction 000000000000	Allocate All 00000000	Our Work ○○○○○○●●○○○○	Conclusions
VC Dimension			
VC Dimension			

- Using Sauer's lemma requires an exponential subset of $[2]^m$
- We have an exponential subset of $[n]^m$
- This is a problem, as [2]^m ⊂ [n]^m has exponential size but VC dimension 0
- Solution: Map $[n]^m \rightarrow [2]^{nm}$

- 1 means *i* gets it, 0 means someone else does
- By sacrificing a factor of *n*, we can fix *i*

Now what do	wo know?		
VC Dimension			
Introduction 000000000000	Allocate All 00000000	Our Work ○○○○○○○●○○○	Conclusions

So we now see that the large range means that the range solves exactly over an auction with 2 bidders, one corresponding to a special bidder i and the rest forming a meta-bidder.

We do not know that this auction is hard yet, however, as the meta-bidder has a restricted class of valuations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
- 2 Allocate All
 - Allocate All Items
 - Large Range
 - VC Dimension

3 Our Work

- The Issues
- Large Range
- VC Dimension

Subset Sum

Introduction 000000000000	Allocate All 0000000	Our Work ○○○○○○○○○●○	Conclusions
Subset Sum			
Embedding S	ubset Sum		

• Let a_1, \ldots, a_m be a subset sum instance with target τ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction 000000000000	Allocate All 00000000	Our Work ○○○○○○○○○○	Conclusions
Subset Sum			
Embedding S	ubset Sum		

• Let a_1, \ldots, a_m be a subset sum instance with target τ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The meta-bidder has $b = \infty$, $v_j = a_j$
- For bidder *i*, $b = 2\tau$, $v_j = 2a_j$

Introduction	Allocate All	Our Work	Conclusions
000000000000	0000000	0000000000000	
Subset Sum			

Embedding Subset Sum

• Let a_1, \ldots, a_m be a subset sum instance with target au

- The meta-bidder has $b = \infty$, $v_j = a_j$
- For bidder *i*, $b = 2\tau$, $v_j = 2a_j$
- A subset sums to au iff we get welfare $\sum_j a_j + au$

Introduction 000000000000	Allocate All 00000000	Our Work	Conclusions
Subset Sum			
Done			

So if a maximal-in-range mechanism approximates the social welfare better than $\min(n, m^{1/2-\epsilon})$, subset sum has polynomial circuits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000000000000 Allocate All

Our Work

Conclusions and Open Problems

- We showed that for any poly-bounded n, no poly-time MIR mechanism can beat $\min(n, m^{1/2-\epsilon})$
- This essentially solves the problem, as a $\min(n, 2\sqrt{m})$ approximation exists.
- The more general question of how well truthful mechanisms can perform is left open