A Combinatorial Look at Auctions

Dave Buchfuhrer Chris Umans

October 9, 2009

Outline

（1）Introduction
－Auctions
－VCG Mechanisms
－The Model
－Background
（2）Allocate All
－Allocate All Items
－Large Range
－VC Dimension
（3）Our Work
－The Issues
－Large Range
－VC Dimension
－Subset Sum
（4）Conclusions

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

Auctions

We consider combinatorial auctions of m items to n bidders where we wish to maximize the social welfare.

- The VCG mechanism can be used for truthfulness
- An FPTAS can be used to approximate arbitrarily well
- Can we achieve efficiency and truthfulness simultaneously?

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background

(2) Allocate All

- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum
(4) Conclusions

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

80

80

80

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

- To counter greed, each player is charged for this harm

VCG Mechanisms

The VCG Mechanism

- By participating in the auction, each bidder harms the others

- To counter greed, each player is charged for this harm
- Intuitively, the player wants the social welfare maximized

Maximal-in-Range

The VCG mechanism allows for truth given exact solutions

- For VCG to work, simply maximize $W(a)$ over all allocations A

VCG Mechanisms

Maximal-in-Range

The VCG mechanism allows for truth given exact solutions

- For VCG to work, simply maximize $W(a)$ over all allocations A
- VCG works if we maximize $W(r)$ over any $R \subseteq A$

VCG Mechanisms

Maximal-in-Range

The VCG mechanism allows for truth given exact solutions

- For VCG to work, simply maximize $W(a)$ over all allocations A
- VCG works if we maximize $W(r)$ over any $R \subseteq A$
- These are exactly the types of algorithms for which VCG works

Maximal-in-Range

The VCG mechanism allows for truth given exact solutions

- For VCG to work, simply maximize $W(a)$ over all allocations A
- VCG works if we maximize $W(r)$ over any $R \subseteq A$
- These are exactly the types of algorithms for which VCG works

Example

Grouping all items into one lot, we can maximize over a range of size n. This yields a $1 / n$ approximation.

VCG Mechanisms

MIR Example

- By giving all items to one player, we do well when welfare is concentrated

VCG Mechanisms

MIR Example

- By giving all items to one player, we do well when welfare is concentrated
- To do well when welfare is spread out, we can treat the auction as unit demand and solve exactly

VCG Mechanisms

MIR Example

- By giving all items to one player, we do well when welfare is concentrated
- To do well when welfare is spread out, we can treat the auction as unit demand and solve exactly
- One of these gets at least a $\min (n, 2 \sqrt{m})$ approximation

VCG Mechanisms

Proof of Approximation Ratio

We know that it gets at least n, so let's see that we get $2 \sqrt{m}$ - In an optimal allocation, bidders get $\leq \sqrt{m}$ or $>\sqrt{m}$ items

VCG Mechanisms

Proof of Approximation Ratio

We know that it gets at least n, so let's see that we get $2 \sqrt{m}$

- In an optimal allocation, bidders get $\leq \sqrt{m}$ or $>\sqrt{m}$ items
- If most of the welfare goes to those with $\leq \sqrt{m}$ items, the unit allocation can get a \sqrt{m} approximation on each of them

VCG Mechanisms

Proof of Approximation Ratio

We know that it gets at least n, so let's see that we get $2 \sqrt{m}$

- In an optimal allocation, bidders get $\leq \sqrt{m}$ or $>\sqrt{m}$ items
- If most of the welfare goes to those with $\leq \sqrt{m}$ items, the unit allocation can get a \sqrt{m} approximation on each of them
- If those with $>\sqrt{m}$ items get more welfare, giving all items to one bidder yields a \sqrt{m} approximation for the group

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background

(2) Allocate All

- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

The Model

The Model

- Each bidder has a valuation function v_{i}
- For each item j, bidder i has a value $v_{i j}$
- Each bidder i has a budget b_{i}
- For each subset $S \subseteq[m]$ of the items,

$$
v_{i}(S)=\min \left(\sum_{j \in S} v_{i j}, b_{i}\right)
$$

The Model

Example: Video Game Auction

Example: Video Game Auction

Example: Video Game Auction

Value: 60

Value: 80

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum
(4) Conclusions

Background

Previous Work

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- n-bidder auctions can't approximate better than $(n+1) / 2 n$ (Mossel et al., 2009)

Background

Previous Work

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- n-bidder auctions can't approximate better than $(n+1) / 2 n$ (Mossel et al., 2009)
- We show that n-bidder auctions can't beat $\min \left(n, m^{1 / 2-\epsilon}\right)$

Background

Previous Work

- Inapproximability for Combinatorial Public Projects (Schapira, Singer, 2008)
- n-bidder auctions can't approximate better than $(n+1) / 2 n$ (Mossel et al., 2009)
- We show that n-bidder auctions can't beat $\min \left(n, m^{1 / 2-\epsilon}\right)$
- The key to all of of these was VC dimension

Background

VC Dimension

- Consider a subset $R \subseteq 2^{[m]}$
- By restricting to $S \subset[m]$, we get a new set R_{S}

Example

If $\{2,3,5\} \in R$ and $S=\{1,2,5\}$, then $\{2,5\} \in R_{S}$.

- The VC dimension is size of the largest S such that $R_{S}=2^{S}$
- For 2-bidder auctions, this is like allocating S in every way

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

Allocate All Items

Our work is based on a related proof for an easier case

- In auctions, items can be given to bidders or retained
- The social welfare is never harmed by giving out more items
- Doing so might result in not being maximal-in-range

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- Let \mathcal{M} maximize value with item 1 , retain item 2
- Create \mathcal{M}^{\prime} by then giving item 2 to bidder 1

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- Let \mathcal{M} maximize value with item 1 , retain item 2
- Create \mathcal{M}^{\prime} by then giving item 2 to bidder 1

Valuations

- Bidder 1 has value 2 for either item and budget 2
- Bidder 2 has value 1 for either item and budget 1

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- Let \mathcal{M} maximize value with item 1 , retain item 2
- Create \mathcal{M}^{\prime} by then giving item 2 to bidder 1

Valuations

- Bidder 1 has value 2 for either item and budget 2
- Bidder 2 has value 1 for either item and budget 1
- \mathcal{M} gives item 1 to bidder 1
- so \mathcal{M}^{\prime} gives both items to bidder 1

Allocating All vs. Maximal-in-Range

Consider a 2 bidder, 2 item auction

Algorithm

- Let \mathcal{M} maximize value with item 1 , retain item 2
- Create \mathcal{M}^{\prime} by then giving item 2 to bidder 1

Valuations

- Bidder 1 has value 2 for either item and budget 2
- Bidder 2 has value 1 for either item and budget 1
- \mathcal{M} gives item 1 to bidder 1
- so \mathcal{M}^{\prime} gives both items to bidder 1
- but \mathcal{M}^{\prime} has a range that includes giving each bidder one item

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

Large Range

Allocation Vectors

We start by looking at 2-bidder MIR allocate all mechanisms

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3

Large Range

Allocation Vectors

We start by looking at 2-bidder MIR allocate all mechanisms

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2] ${ }^{m}$
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3

Large Range

Allocation Vectors

We start by looking at 2-bidder MIR allocate all mechanisms

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2] ${ }^{m}$
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3
- All values are 1 or 0 , budgets are infinite

Large Range

Allocation Vectors

We start by looking at 2-bidder MIR allocate all mechanisms

- Associate a vector in [2] ${ }^{m}$ with each allocation
- 1221 means bidder 1 gets 1 and 4, bidder 2 gets 2 and 3
- Associate a valuation function with each vector in [2] ${ }^{m}$
- 1221 means bidder 1 values 1 and 4, bidder 2 values 2 and 3
- All values are 1 or 0 , budgets are infinite
- Social welfare is just how well the vectors match

Large Range

- Fix an allocation r in the range
- Pick a random value vector v

Large Range

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare $m / 2$

Large Range

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare $m / 2$
- By Chernoff bounds, $m(1 / 2+\epsilon)$ is exponentially unlikely

Large Range

- Fix an allocation r in the range
- Pick a random value vector v
- In expectation, r will achieve social welfare $m / 2$
- By Chernoff bounds, $m(1 / 2+\epsilon)$ is exponentially unlikely
- So it takes an exponentially large range to do well on all v

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum
(4) Conclusions

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly
- Using this subset as advice, we can solve welfare maximization

VC Dimension

- Since $|R|=2^{\alpha m}, R$ has VC dimension δm (Sauer's lemma)
- So there is a subset of δm items on which we can solve exactly
- Using this subset as advice, we can solve welfare maximization
- So approximating to $1 / 2+\epsilon$ is impossible unless $N P \subseteq P /$ poly

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

The Issues

So what's the problem?

- We can't assume all items are allocated

The Issues

So what's the problem?

- We can't assume all items are allocated
- So we focus in on some items where it's close to true

The Issues

So what's the problem?

- We can't assume all items are allocated
- So we focus in on some items where it's close to true
- VC dimension doesn't generalize well to more than 2 bidders

The Issues

So what's the problem?

- We can't assume all items are allocated
- So we focus in on some items where it's close to true
- VC dimension doesn't generalize well to more than 2 bidders
- So we form a meta-bidder out of all but one of the bidders

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum
(4) Conclusions

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- For each S, T_{S} projects R to S

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=12211221 \\
& r=12211221
\end{aligned}
$$

- For each S, T_{S} projects R to S

Large Range

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
& v=12211221 \\
& r=12211221
\end{aligned}
$$

- For each S, T_{S} projects R to S
- T_{S} filters out $r \in R$ such that any $s \in S$ is unassigned

Coverings

- Suppose we have an approximation ratio of $1 / n+\epsilon$
- For every $v \in[n]^{m}$, some $r \in R$ matches $(1 / n+\epsilon) m$ indices

$$
\begin{aligned}
v & =12211221 \\
t & =12211221
\end{aligned}
$$

- For each S, T_{S} projects R to S
- TS filters out $r \in R$ such that any $s \in S$ is unassigned
- $t \in T_{S}$ covers v if it is the projection of v to S

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

Large Range

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

Large Range

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Large Range

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Large Range

Coverings Continued

- If we fix $|S|$, each $v \in[n]^{m}$ is covered $\binom{(1 / n+\epsilon) m}{|S|}$ times

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Large Range

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Large Range

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Large Range

Coverings Continued

$$
\begin{aligned}
& v=122221112212 \\
& r=111221012210
\end{aligned}
$$

- Each $t \in T_{S}$ covers $n^{m-|S|}$ valuations

$$
v=* * * 2 * * * 1 * * * *
$$

- So if

$$
n^{c m}\binom{m}{|S|} n^{m-|S|}<n^{m}\binom{(1 / n+\epsilon) m}{|S|}
$$

there must be a T_{S} of size greater than $n^{c m}$

Large Range

Where are we now?

So we not only have a large range, but by focusing in on S, we have a large range that allocates all items.

Next, we deal with the difficulty of using the VC dimension with more than two bidders.

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- This is a problem, as $[2]^{m} \subset[n]^{m}$ has exponential size but VC dimension 0

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- This is a problem, as $[2]^{m} \subset[n]^{m}$ has exponential size but VC dimension 0
- Solution: Map $[n]^{m} \rightarrow[2]^{n m}$

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- This is a problem, as $[2]^{m} \subset[n]^{m}$ has exponential size but VC dimension 0
- Solution: $\operatorname{Map}[n]^{m} \rightarrow[2]^{n m}$

- 1 means i gets it, 0 means someone else does

VC Dimension

- Using Sauer's lemma requires an exponential subset of [2] ${ }^{m}$
- We have an exponential subset of $[n]^{m}$
- This is a problem, as $[2]^{m} \subset[n]^{m}$ has exponential size but VC dimension 0
- Solution: Map $[n]^{m} \rightarrow[2]^{n m}$

- 1 means i gets it, 0 means someone else does
- By sacrificing a factor of n, we can fix i

Now what do we know?

So we now see that the large range means that the range solves exactly over an auction with 2 bidders, one corresponding to a special bidder i and the rest forming a meta-bidder.

We do not know that this auction is hard yet, however, as the meta-bidder has a restricted class of valuations.

Outline

(1) Introduction

- Auctions
- VCG Mechanisms
- The Model
- Background
(2) Allocate All
- Allocate All Items
- Large Range
- VC Dimension
(3) Our Work
- The Issues
- Large Range
- VC Dimension
- Subset Sum

4. Conclusions

Embedding Subset Sum

- Let a_{1}, \ldots, a_{m} be a subset sum instance with target τ

Subset Sum

Embedding Subset Sum

- Let a_{1}, \ldots, a_{m} be a subset sum instance with target τ
- The meta-bidder has $b=\infty, v_{j}=a_{j}$
- For bidder $i, b=2 \tau, v_{j}=2 a_{j}$

Subset Sum

Embedding Subset Sum

- Let a_{1}, \ldots, a_{m} be a subset sum instance with target τ
- The meta-bidder has $b=\infty, v_{j}=a_{j}$
- For bidder $i, b=2 \tau, v_{j}=2 a_{j}$
- A subset sums to τ iff we get welfare $\sum_{j} a_{j}+\tau$

Done

So if a maximal-in-range mechanism approximates the social welfare better than $\min \left(n, m^{1 / 2-\epsilon}\right)$, subset sum has polynomial circuits.

Conclusions and Open Problems

- We showed that for any poly-bounded n, no poly-time MIR mechanism can beat $\min \left(n, m^{1 / 2-\epsilon}\right)$
- This essentially solves the problem, as a $\min (n, 2 \sqrt{m})$ approximation exists.
- The more general question of how well truthful mechanisms can perform is left open

