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Public Projects

A combinatorial public project is a game in which the goal is to choose k
items from a set to provide for shared use among n agents.

Example

Suppose you are the administrator for a small park. You have room for 3
pieces of equipment. Which pieces do you choose in order to make local
families happiest?
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Park Design

So many choices for equipment

And every parent has an opinion

“There must be a swing set”

“If there isn’t tetherball, the terrorists have already won”

“My kids need a merry go round and a playground equipment”

“I’ll picket if there’s anything dangerous”

“Kids need exercise. No equipment that can be used while sitting!”
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What to do?

You can’t make everyone happy, but you can try to make the park as good
for the public as possible.

Definition (Social Welfare)

Suppose that each agent i gets value vi (S) for allocation S . Then the
social welfare of S is ∑

i

vi (S)
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More than computation

So now we have a computational problem. Given the valuations v1, . . . , vn

of the n agents, find a set S of size k maximizing the social welfare.
Unfortunately, we have the added difficulty that people will lie.

Example (Elections)

In the US, people will lie on ballots that they desire one of the major party
candidates, rather than “throw their votes away” on preferred third party
candidates.
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Truthfulness

We would like to design a mechanism whereby we are able to elicit the
true valuations and approximate the social welfare well.

In order to do so, we allow money to change hands. We already know how
to achieve truthful prices via the VCG mechanism. This allows for any
allocation algorithm to be made truthful iff it is maximal in range.

Definition (Maximal in Range)

An allocation algorithm is maximal in range if there exists a set R such
that it always outputs a member of R maximizing the social welfare.
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VCG-based mechanisms

VCG-based mechanisms are the only known general method for achieving
truthfulness in games like this. Furthermore, they are sometimes the only
way to get truthfulness.

Theorem (Roberts, 1979)

The only truthful mechanism for general games is the VCG mechanism.

Papadimitriou, Schapira and Singer showed this for public projects in 2008
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Performance of MIR mechanisms

Theorem

A maximal in range allocation algorithm for any NP-hard combinatorial
public project cannot approximate the welfare with a ratio better than

√
m

unless NP ⊆ P/poly .

Proof (Sketch).

A mechanism that gets better than a
√

m ratio requires an
exponential range for sufficiently expressive valuation classes (PSS 08)

By Sauer’s lemma, an exponential range must contain a
polynomial-sized subset S∗ of items allocated in every way

We construct instances in which it is NP-hard to determine which
members of S∗ should be selected. These follow fairly directly from
the proofs of NP-hardness.
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Using the proof

The proof framework described requires different proofs depending on
what class of valuations the agents are allowed to have.
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Motivating Example

A local food court has k empty storefronts. The shoppers each only care
about their favorite restaurant in the food court.
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Definition

Definition (Unit-Demand Valuation)

An agent with a unit-demand valuation has private values wj for each item
j , and has total value

vi (S) = max
j∈S

wj

for set S .
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NP hardness

Theorem

The public project problem with unit-demand agents is NP-hard.

Proof by picture

Reduction from vertex cover:
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Truthful Approximation

Recall

NP hardness means VCG mechanisms can’t beat a
√

m approximation

Theorem

There exists a truthful 2-approximation for public projects produced by our
vertex cover reduction

Mechanism

Choose the k items corresponding to the vertices of highest degree

Proof (2-approximation).

You can’t cover more edges than the maximum sum of degrees

The number of edges covered is at least half that sum
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Lemma

The below mechanism is truthful.

Mechanism

Choose the k items corresponding to the vertices of highest degree

Proof.

Consider an agent lying.
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Summary

Unit-demand is NP-hard, meaning that VCG can’t beat a
√

m
approximation

For one limited subclass, we can get around this limitation with a
truthful 2-approximation
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Motivating Example

Again, the food court has k empty storefronts. The neighbors have grown
more sophisticated in their tastes and demand some variety. They want to
eat at different restaurants for breakfast, lunch and dinner.
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Definition

Definition (Multi-Unit-Demand Valuation)

An agent with a multi-unit-demand valuation has private unit-demand

valuation functions v
(1)
i , . . . , v

(`)
i , and has value

vi (S) = max
S1,...,S`⊆S

Sj∩Sj′=∅ ∀j 6=j ′

∑
j

v
(j)
i (Sj)

for set S .
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Computing Values

Computing vi (S) for an agent may seem difficult, but it can be
accomplished easily via matching:

B

L

D
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Flow

This can be extended to a solution for 2 agents via network flow.

Theorem

The public projects problem with 2 multi-unit-demand agents is in P.

B

L

D

B

L

D

TS k

Each choice of k items corresponds to a flow.
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NP Hardness

Theorem

The public projects problem with 3 multi-unit-demand agents is NP-hard.

We use a reduction from 3-dimensional matching.

Definition (3-Dimensional Matching)

Input: A set M ⊆ [q]× [q]× [q].
Decision Problem: Does there exist some M ′ ⊆ M such that |M ′| = q
and no two members of M ′ agree on any coordinate?

Reduction

The ith agent has value equal to the number of distinct ith coordinates.

Each of the 3 agents has q unit-demand valuations. For each i , j , k ∈ M,
create an item that is only valued by agent 1’s ith valuation, agent 2’s jth
valuation and agent 3’s kth valuation. Allow for q items to be chosen.
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2/3 approximation

Although VCG can’t beat a
√

m approximation for 3 agents, we can use a
randomized VCG strategy to get an expected 2/3 approximation.

Theorem

The below mechanism is universally truthful and achieves at least a 2/3
approximation in expectation.

Mechanism

Choose 2 of the 3 agents uniformly at random

Solve exactly for these 2 agents using the VCG mechanism
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Summary

Multi-unit-demand is easy for 2 agents, but hard for 3

Despite the failure of the VCG mechanism for 3 agents, we can
randomize for a constant approximation
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Motivating Example

Now that the mall visitors are well-fed, they head to the gym. The gym
has room for k pieces of exercise equipment.

Visitors want to maximize gym hours

Visitors have differing abilities on each machine

Visitors have time constraints on their workouts
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Definition

Definition (Capped Additive Valuation)

An agent with a capped additive valuation has private values wj for each
item j , and a value limit b, and has value

vi (S) = min

∑
j∈S

wj , b


for set S .
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NP Hardness

Theorem

The public projects problem with capped-additive agents is NP-hard.

We reduce from subset sum.

Definition (Subset Sum)

Input: A set of positive integers w1, . . . ,w`, and a positive integer t
Decision Problem: Does there exist a set S ⊆ [`] such that

∑
i∈S wi = t?

Proof.

Add ` integers w`+1, . . . ,w2` = 0. There are m = 2` items and k = `.

Agent 1 has value 2wj for item j and budget 2t

Let W = maxj wj . Agent 2 has value W − wj for item j and b =∞
Social welfare `W + t is achievable iff ∃S ,

∑
i∈S wi = t
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Pseudo-Poly Algorithm

We can use dynamic programming if the valuations are small.

Theorem

There is a pseudo-polynomial time algorithm for the public projects
problem with a constant number of capped-additive agents.

Algorithm (Dynamic Programming)

Create an n + 2 dimensional table

Entry v1, . . . , vn, i , j denotes whether there exists a set S ⊆ [i ], |S | = j
such that agent ` has value v`.

The table has poly size if no agent can have superpolynomial value

If we fill in all the entries for i − 1, j and i − 1, j − 1, we can easily fill
in all the entries for i , j

This can be turned into an FPTAS by ignoring the low order bits
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Summary

Despite the existence of an FPTAS, no known truthful mechanism beats a√
m approximation for 2 capped additive agents.
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Motivating Example

Now that everyone is well fed and in shape, they can get to the serious
business of shopping. But with all the food court and gym construction,
there’s only room for k more shops! Each shopper has a list.

Shopper 1:

“Juicy” shorts

Ear piercing

“Hello Kitty” compact

Cell phone accessories

Shopper 2:

Pet toys

Baby clothes

Diapers

Lingerie

Shopper 3:

Sofa

Chairs

Bed

Curtains

Television

Shopper 4:

Cough syrup

Matchbooks

Iodine
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Definition

Definition (Coverage Valuation)

An agent with a coverage valuation associates a set Tj with each item j ,
and has value

vi (S) =

∣∣∣∣∣∣
⋃
j∈S

Tj

∣∣∣∣∣∣
for set S .
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NP hardness

Theorem

The public projects problem with a single coverage valuation agent is
NP-hard.

Definition (max-k-cover)

Input: Several sets T1, . . . ,Tm

Goal: Find a set S ⊆ [m], |S | = k maximizing |
⋃

j∈S Tj |

Definition (Public Project with 1 Coverage Valuation Agent)

Input:

Several sets T1, . . . ,Tm

Goal:

Find a set S ⊆ [m], |S | = k maximizing |
⋃

j∈S Tj |
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Wait a second...

Theorem

No truthful poly-time mechanism for public projects can achieve better
than a

√
m approximation unless NP ⊆ P/poly .

Proof.

Our results show hardness for VCG to do better than
√

m

For a single agent, any mechanism must be maximal-in-range to be
truthful, so VCG is all there is

As this is submodular, we can get a 1− 1/e greedy approximation.

Both the agent and the mechanism want the social welfare maximized, but
if we want truthfulness, they can’t even do as well as the greedy algorithm.
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Summary

No truthful mechanism gets a good approximation despite the lack of
conflicting goals.
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Summary of Results

VCG can’t get any constant approximation for

n unit-demand agents

3 multi-unit-demand agents

2 capped additive agents

1 coverage agent

But

There is a constant approximation for a special case of unit-demand

A solution for 2 multi-unit-demand agents can be used to get a 2/3
approximation for 3

There is an FPTAS for capped additive agents

All truthful mechanisms are VCG-based for coverage valuation agents
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Conclusions and Open Problems

For public projects, we have to look beyond the VCG mechanism
Can we develop better truthful mechanisms than VCG?

In some situations, truthfulness is inherently flawed
What should we use when truthfulness doesn’t fit?
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