The complexity of Boolean formula minimization

Dave Buchfuhrer Chris Umans

July 7, 2008

Formula Minimization Problem

- You wish to compute some function f

Formula Minimization Problem

- You wish to compute some function f
- So you create a formula F computing f
- You want F small

Formal Definition

Problem (Minimum Equivalent Expression)

Given a formula F and an integer k, is there a formula F^{\prime} equivalent to F of size at most k ?

- Size is defined to be the number of occurrences of input variables in the formula.
- $\ln \Sigma_{2}^{P}$

Example

Problem (Minimum Equivalent Expression)

Given a formula F and an integer k, is there a formula F^{\prime} equivalent to F of size at most k ?

Example

Problem (Minimum Equivalent Expression)

Given a formula F and an integer k, is there a formula F^{\prime} equivalent to F of size at most k ?

- The size of this formula is 9

Example

Problem (Minimum Equivalent Expression)

Given a formula F and an integer k, is there a formula F^{\prime} equivalent to F of size at most k ?

- The size of this formula is 9
- What's special about $k=0$ here?

History of the Problem

- Defined in the early 70's by Meyer and Stockmeyer, inspired the Polynomial Hierarchy
- Clearly coNP-hard
- Proven $\mathrm{P}_{\|}^{\mathrm{NP}}$-hard in 1997 (Hemaspaandra and Wechsung)
- DNF version proven Σ_{2}^{P}-complete in 1999 (Umans)
- We show that Minimum Equivalent Expression is Σ_{2}^{P}-complete under Turing reductions, both for unrestricted formulas and for formula restricted to any fixed depth $d \geq 3$

Why is it hard?

- In the hard direction of the reduction, we need a formula lower bound
- Circuit and formula lower bounds are hard
- We make use of very simple lower bounds

Outline

(1) Problem Definition
(2) Weighting
(3) The Reduction

- Modified Succinct Set Cover
- Overview of Reduction

4 Open Problems

Weighting

- It would be convenient to count each variable x as having weight $w(x)$
- Can this be done without changing the problem definition?

Weighting

- It would be convenient to count each variable x as having weight $w(x)$
- Can this be done without changing the problem definition?
- Our idea: replace x with $x_{1} \wedge \cdots \wedge x_{w(x)}$

Variable Weighting

The Results of Weighting

- We start with a formula F computing $f\left(x^{(1)}, \ldots, x^{(n)}\right)$
- We end with a formula F^{\prime} computing

$$
f^{\prime}=f\left(x_{1}^{(1)} \wedge \cdots \wedge x_{w\left(x^{(1)}\right)}^{(1)}, \ldots, x_{1}^{(n)} \wedge \cdots \wedge x_{w\left(x^{(n)}\right)}^{(n)}\right)
$$

The Results of Weighting

- We start with a formula F computing $f\left(x^{(1)}, \ldots, x^{(n)}\right)$
- We end with a formula F^{\prime} computing

$$
f^{\prime}=f\left(x_{1}^{(1)} \wedge \cdots \wedge x_{w\left(x^{(1)}\right)}^{(1)}, \ldots, x_{1}^{(n)} \wedge \cdots \wedge x_{w\left(x^{(n)}\right)}^{(n)}\right)
$$

Lemma

The minimum formula F^{\prime} equivalent to F after expanding the weights is at least as large as the minimum weighted formula for F.

Weighting Lemma

Lemma

The minimum formula F^{\prime} equivalent to F after expanding the weights is at least as large as the minimum weighted formula for F.

Proof

- Each variable x becomes $x_{1} \wedge \cdots \wedge x_{w(x)}$ in the expanded form

Weighting Lemma

Lemma

The minimum formula F^{\prime} equivalent to F after expanding the weights is at least as large as the minimum weighted formula for F.

Proof

- Each variable x becomes $x_{1} \wedge \cdots \wedge x_{w(x)}$ in the expanded form
- Take the i^{*} such that $x_{i^{*}}$ occurs least frequently of all x_{i} in F^{\prime}
- Restrict $x_{i}=$ True for $i \neq i^{*}$ to arrive at $F^{\prime \prime}$
- Under this restriction, $x_{1} \wedge \cdots \wedge x_{w(x)}$ becomes $x_{i^{*}}$

Weighting Lemma

Lemma

The minimum formula F^{\prime} equivalent to F after expanding the weights is at least as large as the minimum weighted formula for F.

Proof

- Each variable x becomes $x_{1} \wedge \cdots \wedge x_{w(x)}$ in the expanded form
- Take the i^{*} such that $x_{i^{*}}$ occurs least frequently of all x_{i} in F^{\prime}
- Restrict $x_{i}=$ True for $i \neq i^{*}$ to arrive at $F^{\prime \prime}$
- Under this restriction, $x_{1} \wedge \cdots \wedge x_{w(x)}$ becomes $x_{i^{*}}$
- $F^{\prime \prime}$ is equivalent to F
- F^{\prime} has as many x_{i} as $w(x)$ times the number of $x_{i^{*}}$ in $F^{\prime \prime}$

Modified Succinct Set Cover

Problem (Modified Succinct Set Cover)

Given a DNF formula D, variables x_{1}, \ldots, x_{n} and an integer k, where D is a formula on variables $x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{n}$, is there a set I of size at most k such that

$$
D \vee \bigvee_{i \in I} \overline{x_{i}} \equiv D \vee \bigvee_{i=1}^{n} \overline{x_{i}} \equiv \bigvee_{i=1}^{m} \overline{v_{i}} \vee \bigvee_{i=1}^{n} \overline{x_{i}} ?
$$

- Basically, we want to know how many $\overline{x_{i}}$ are necessary to cover the assignments not accepted by D, other than the all true assignment
- Slight modification of problem used to prove DNF version Σ_{2}^{P}-complete (Umans 1999)

Succinct Set Cover Visualized

- Each set $\overline{x_{i}}$ covers half of all points
- None cover the all true point
- How many are necessary to cover the dark blue region?

Overview

- We start with Modified Succinct Set Cover instance $\left\langle D, x_{1}, \ldots, x_{n}, k\right\rangle$
- We create the Minimum Equivalent Expression instance with formula $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ and size target $|\widehat{D}|_{w}+w(z)+k$
- Finding $|\widehat{D}|_{w}$ necessitates a Turing reduction

Overview

- When z is false, the formula becomes simply D
- When z is true, it "unlocks" a portion computing the set cover

The Easy Direction

The question asked by reduction

Is there a formula for $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ of size $|\widehat{D}|_{w}+w(z)+k$?
Easy direction: The Modified Succinct Set Cover is positive, so

$$
D \vee \bigvee_{i \in I} \overline{x_{i}} \equiv D \vee \bigvee_{i=1}^{n} \overline{x_{i}}
$$

which gives us the formula

$$
\widehat{D} \vee\left(z \wedge \bigvee_{i \in I} \overline{x_{i}}\right) \equiv D \vee\left(z \wedge \bigvee_{i=1}^{n} \overline{x_{i}}\right)
$$

of size $|\widehat{D}|_{w}+w(z)+k$

The Hard Direction

The question asked by reduction

Is there a formula for $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ of size $|\widehat{D}|_{w}+w(z)+k$?

- If the Modified Succinct Set Cover instance is negative, there shouldn't be a small equivalent formula

The Hard Direction

The question asked by reduction

Is there a formula for $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ of size $|\widehat{D}|_{w}+w(z)+k$?

- If the Modified Succinct Set Cover instance is negative, there shouldn't be a small equivalent formula
- We show that one such formula must be $\widehat{D} \vee\left(z \wedge \bigvee_{i \in I} \overline{x_{i}}\right)$

The Hard Direction

The question asked by reduction

Is there a formula for $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ of size $|\widehat{D}|_{w}+w(z)+k$?

- If the Modified Succinct Set Cover instance is negative, there shouldn't be a small equivalent formula
- We show that one such formula must be $\widehat{D} \vee\left(z \wedge \bigvee_{i \in I} \overline{x_{i}}\right)$
- z is weighted such that $2 w(z)>|\widehat{D}|_{w}+w(z)+k$

The Hard Direction

The question asked by reduction

Is there a formula for $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ of size $|\widehat{D}|_{w}+w(z)+k$?

- If the Modified Succinct Set Cover instance is negative, there shouldn't be a small equivalent formula
- We show that one such formula must be $\widehat{D} \vee\left(z \wedge \bigvee_{i \in I} \overline{x_{i}}\right)$
- z is weighted such that $2 w(z)>|\widehat{D}|_{w}+w(z)+k$
- The position of the z is proven through case analysis and requires slight modifications to the reduction

Consequences of z Position

- Given this positioning, $A \equiv D$ and B computes the set cover
- If we weight all variables other than the x_{i} by more than k, B can only contain x_{i} variables

Consequences of z Position

- Given this positioning, $A \equiv D$ and B computes the set cover
- If we weight all variables other than the x_{i} by more than k, B can only contain x_{i} variables

Lemma

A minimum formula accepting a set S but not the all true assignment is of the form $\bigvee_{i} \overline{x_{i}}$

Wrapping it up

The question asked by reduction

Is there a formula for $D \vee\left(z \wedge \bigvee_{i} \overline{x_{i}}\right)$ of size $|\widehat{D}|_{w}+w(z)+k$?

- $A \equiv D$, so $|A|_{w} \geq|\widehat{D}|_{w}$
- So size is at least

$$
|\widehat{D}|_{w}+w(z)+|B|_{w}
$$

- As shown above, $|B|_{w} \leq k$ only if the Modified Succinct Set Cover instance is positive

Open Problems

- Can the Σ_{2}^{P}-completeness result be shown without Turing reductions?
- What is the complexity of approximation?
- What is the complexity when minimizing circuits rather than formulas?

Open Problems

- Can the Σ_{2}^{P}-completeness result be shown without Turing reductions?
- What is the complexity of approximation?
- What is the complexity when minimizing circuits rather than formulas?

A full version of this paper is available at http://www.cs.caltech.edu/~dave/papers/

