
CS/CNS/EE 253: Advanced Topics in Machine Learning
Topic: Dealing with Partial Feedback #2 Lecturer: Daniel Golovin
Scribe: Chris Berlind Date: Feb 1, 2010

8.1 Review

In the previous lecture we began looking at algorithms for dealing with sequential decision problems
in the bandit (or partial) feedback model. In this model, there are K “arms” indexed by 1, 2, . . . ,K,
each with an associated payoff function ri(t) which is unknown. In each round t, an arm i is chosen
and the reward ri(t) ∈ [0, 1] is gained. Only ri(t) is revealed to the algorithm at the end of round
t, where i is the arm chosen in that round; it is kept ignorant of rj(t) for all other arms j 6= i. The
goal is to find an algorithm specifying how to choose an arm in each round that will maximize the
total reward over all rounds. We began our study of this model with an assumption of stochastic
rewards, as opposed to the harder adversarial rewards case. Thus we assume there is an underlying
distribution Ri for each arm i, and each ri(t) is drawn from Ri independently of all other rewards
(both of arm i during rounds other than t, and of other arms during round t). Note we assume the
rewards are bounded; specifically, ri(t) ∈ [0, 1] for all i and t.

We first explored the εt-Greedy algorithm in which with probability εt an arm is chosen uniformly
at random, and with probability 1− εt the arm with the highest observed average reward is chosen.
For the right choice of εt, this algorithm has expected regret logarithmic in T .

We can improve upon this algorithm by taking better advantage of the information we have available
to us. In addition to the average payoff for each arm, we also know how many times we have played
each arm. This allows us to estimate confidence bounds for each arm which leads to the Upper
Confidence Bound (UCB) algorithm explained in detail in the last lecture. The UCB1 algorithm
also has expected regret logarithmic in T .

8.2 Exp3

The regret bounds for the εt-Greedy and UCB1 algorithms were proved under the assumption of
stochastic payoff functions. When the payoff functions are non-stochastic (e.g. adversarial) these
algorithms do not fair so well. Because UCB1 is entirely deterministic, an adversary could predict
its play and choose payoffs to force UCB1 into making bad decisions. This flaw motivates the
introduction of a new bandit algorithm, Exp3 [1] which is useful in the non-stochastic payoff case.

In these notes, we will develop a variant of Exp3, and give a regret bound for it. The algorithm
and analysis here are non-standard, and are provided to expose the role of unbiased estimates and
their variances in the developing effective no-regret algorithms in the non-stochastic payoff case.

8.2.1 Hedge & the Power of Unbiased Estimates

Back in Lecture 2, the Hedge algorithm was introduced to deal with sequential decision-making
under the full information model. The reward-maximizing version of the Hedge algorithm is defined

1

as

Hedge(ε)

1 wi(1) = 1 i = 1, . . . ,K
2 for t = 1 to T

3 Play Xt = i w.p. wi(t)∑
j wj(t)

4 wi(t+ 1) = wi(t)(1 + ε)ri(t) i = 1, . . . ,K

At every timestep t, each arm i has weight wi(t) = (1 + ε)
∑

t′≤t ri(t
′) and an arm is chosen with

probability proportional to the weights. We let Xt denote the arm chosen in round t.

In this algorithm, Hedge always sees the true payoff ri(t) in each round. Fix some real number
b ≥ 1. Suppose each ri(t) in Hedge is replaced with a random variable Ri(t) such that Ri(t) is
always in [0, 1] and E[Ri(t)] = ri(t)/b. We imagine Hedge gets actual reward ri(t) if it picks i
but only gets to see feedback Rj(t) for each j rather than the true rewards rj(t). We can find a
lower bound for the expected payoff E

[∑
t b ·RXt

(t)
]

= E
[∑

t rXt
(t)
]

as follows. First note that
the upper bound on Hedge’s expected regret on the payoffs Ri(t) ensures

E

[
T∑
t=1

RXt
(t)

]
≥ E

[
max
i

T∑
t=1

Ri(t)
(

1− ε

2

)
− lnK

ε

]
Also note that for any set of random variables R1, R2, . . . , Rn

E

[
max
i
Ri

]
≥ max

i
E[Ri]

One way to see this is to let j = argmaxiE[Ri] and note that maxi{Ri} ≥ Rj , always. Hence
E[maxiRi] ≥ E[Rj] = maxiE[Ri]. Using these two inequalities together with E[Ri(t)] = ri(t)/b
we infer the following bound. Below, expectation is taken with respect to both the randomness of
Ri(t) and with respect to the randomness we used for Hedge.

E

[
T∑
t=1

rXt
(t)

]
= E

[
T∑
t=1

b ·RXt
(t)

]
= b ·E

[
T∑
t=1

RXt
(t)

]

≥ b ·E

[
max
i

T∑
t=1

Ri(t)
(

1− ε

2

)
− lnK

ε

]

= max
i

b ·E

[
T∑
t=1

Ri(t)
(

1− ε

2

)]
− b lnK

ε

= max
i

T∑
t=1

ri(t)
(

1− ε

2

)
− b lnK

ε

Hence

E

[
T∑
t=1

rXt
(t)

]
≥ max

i

T∑
t=1

ri(t)
(

1− ε

2

)
− b lnK

ε
(8.2.1)

2

This indicates that even though Hedge is not seeing the correct payoffs, it still has nearly the same
regret bound due to the linearity of expectation. The only difference is that the lnK

ε term in the

regret increases to b lnK
ε . This will turn out to be a very useful property.

8.2.2 A Variation on the Exp3 Algorithm

The idea here is to observe a random variable and feed it to Hedge, since the above analysis shows
this will not hurt our performance. Define

R′i(t) =

{
0 if i is not played in round t
ri(t)
pi(t)

otherwise

where pi(t) = Pr[Xt = i]. Then E[R′i(t)] = ri(t). To use the above ideas we need to scale
these random rewards so that they always fall in [0, 1]. Since ri(t) ∈ [0, 1] by assumption, the
required scaling factor is b = mini,t pi(t). This suggests that using Hedge directly in the bandit
model would result in a poor bound on the expected regret because some arms might see their
selection probability pi(t) tend to zero, which will cause b to tend to ∞, rendering our bound in
equation (8.2.1) useless. Intuitively this makes sense. Since we are working in the adversarial
payoffs model, and lousy historical performance is no guarantee on lousy future performance, we
cannot ignore any arm for too long. We must continuously explore the space of arms in case one of
the previously bad arms turns out to be the best one overall in hindsight. Alternately, we can view
the problem as controlling the variance of our estimate for the average reward (averaged over all
rounds so far) for a given arm. Even if our estimate is unbiased (so that the mean is correct), there
is a price we pay for its variance. To enforce the constraint that we continuously explore all arms
(and keep these variances under control), we put a lower bound of γ/K on the probabilities pi(t).
This ensures that b = K/γ suffices. The result is a modified form of Hedge. In this algorithm, a
variation on Exp3, each timestep plays according to the Hedge algorithm with reward

Ri(t) := R′i(t)/b = γR′i(t)/K

with probability 1− ε and plays an arm uniformly at random otherwise. Formally, it is defined as
follows:

Exp3-Variant(ε, γ)

1 for t = 1 to T

2 pi(t) = (1− γ) wi(t)∑
j wj(t)

+ γ
K i = 1, . . . ,K

3 Play Xt = i w.p. pi(t)

4 Let Ri(t) =

{
γ
K
ri(t)
pi(t)

if Xt = i

0 otherwise

5 wi(t+ 1) = wi(t)(1 + ε)Ri(t) i = 1, . . . ,K

Let OPT(S) := maxi
∑

t∈S ri(t) be the reward of the best fixed arm in hindsight over rounds in
S, and let OPTT := OPT({1, 2, . . . , T}) Using Equation (8.2.1), we get the following bound on

3

expected reward bound, where Xt is what we played on round t.

E

[
T∑
t=1

rXt
(t)

]
≥ E

[
max
i

∑
t∈EXPLOIT

ri(t)
(

1− ε

2

)]
− K lnK

γε

Here, EXPLOIT is the (random) set of rounds on which the algorithm exploited previous knowledge
rather than explored1. It is not too hard to see that E[OPT(EXPLOIT)] ≥ (1−γ)OPTT . In effect,
giving up the reward for each round with probability γ to explore should only cause us to lose a γ
fraction of the static optimum OPTT). Thus we get the following regret bound.

Theorem 8.2.1 The algorithm above obtains expected reward at least E[OPT(EXPLOIT)]·
(
1− ε

2

)
−

K lnK
γε and so has expected regret at most

(
ε
2 + γ

)
OPTT + K lnK

γε .

Noting OPTT ≤ T and balancing terms, we can optimize the bound by setting ε, γ = Θ((K lnK)1/3T−1/3)
for a regret bound of O(T 2/3(K logK)1/3).

Compared to the O(K log T) regret bounds in the stochatic reward setting, this is much worse.
Ignoring the dependence on K, it means the average regret shrinks as O(T−1/3) instead of O(log TT).
This algorithm and analysis are not the best possible; As we discuss below, Exp3 achieves a
O(
√
TK logK) regret bound, and a lower bound of Ω(

√
TK) is known for the adversarial payoff

case.

8.2.3 The Original Exp3 Algorithm

The original Exp3 algorithm has only one parameter, γ, and is obtained by setting ε = e− 1 in our
variant, i.e., Exp3(γ) ≡ Exp3-Variant(e− 1, γ). Here is the psuedocode.

Exp3(γ)

1 for t = 1 to T

2 pi(t) = (1− γ) wi(t)∑
j wj(t)

+ γ
K i = 1, . . . ,K

3 Play Xt = i w.p. pi(t)

4 Let Ri(t) =

{
γ
K
ri(t)
pi(t)

if Xt = i

0 otherwise

5 wi(t+ 1) = wi(t) exp(Ri(t)) i = 1, . . . ,K

Auer et al. [1] then prove the following regret bound for Exp3.

Theorem 8.2.2 The expected regret of Exp3(γ) after T rounds is at most

(e− 1) γOPTT −
K lnK

γ

where OPTT is the static optimum for the first T rounds.

1To decide if a round t was an “exploitation” or an “exploration” round, let i be the arm chosen in round t, and
flip a coin with bias γ · (Kpi(t))

−1. If it comes up heads, its an exploration round. Otherwise its an exploitation
round. Proving E[OPT(EXPLOIT)] ≥ (1 − γ)OPTT is easy if you note that this can be done after all the rounds
have been played.

4

With the optimum choice of ε it is possible to achieve a regret bound of O(
√

OPTT K lnK).

8.3 Gradient Descent without the Gradient

Unbiased estimates are used in other algorithms in the bandit feedback model as well. For example,
Flaxman et al.[2] have shown that it is possible to perform gradient descent in the bandit setting
by getting an unbaised estimate of an n-dimensional gradient2 from an observed (scalar) reward!
See their paper and references therein for more on this topic.

References

[1] Peter Auer, Nicolo Cesa-Bianchi, Yaov Freund, and Robert E. Schapire. The non-stochastic
multi-armed bandit problem. SIAM journal on computing, 32:48–77, 2002.

[2] Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex opti-
mization in the bandit setting: gradient descent without a gradient. In SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394. Society
for Industrial and Applied Mathematics, 2005.

2They estimate the gradient of a smoothed version of the objective function, rather than the gradient of the
objective function itself.

5

