
CS/CNS/EE 253: Advanced Topics in Machine Learning
Topic: Online Convex Optimization and Online SVM Lecturer: Daniel Golovin
Scribe: Xiaodi Hou Date: Jan 13, 2010

4.1 Online Convex Optimization

Definition 4.1.1 In Euclidian space, a set C is said to be convex, if ∀x, y ∈ C, and t ∈ [0, 1],
z = (1− t)x+ ty is in C.
Definition 4.1.2 A function f : D → R is called convex, if ∀x, y ∈ D, and t ∈ [0, 1], f((1− t)x+
y) ≤ (1− t)f(x) + tf(y).

Let the feasible set X ⊆ Rn be a convex set. We have T convex cost functions: c1, c2, . . . , cT , where
each of the functions is defined as ci : X → [0, 1].

Theorem 4.1.3 (Zinkevich ’03 [1]) Zinkevich [1] proposed an algorithm for online convex opti-
mization:

1. Choose x1 arbitrarily in X

2. Update xt+1 = ProjX
(
xt − ηt · ∇ct(xt)

)
where ηt is a non-increasing function of t. Common choices are ηt =

1√
t
, or ηt =

1

t
.

Using ηt = 1/
√
t the regret of this online algorithm is bounded by:

T∑
t=1

ct(xt)− ct(zt) ≤ D2

2

√
T +G2

√
T + 2D · L(z1, z2, . . . , zT )

√
T ,

where D = max
x,y∈X

‖x − y‖2 is the radius of the set; ∀t,∀x ∈ X , ‖∇ct(x)‖2 ≤ G is the upper

bound of the gradient, and L is the total length of the drift, from z1 to zT , i.e., L(z1, . . . , zT ) :=∑T−1
i=1 ‖zi+1 − zi‖2.

One example of how we can use this algorithm is as an alternative to the Hedge algorithm, in the
case where we have n experts. For this, we construct a dimension for each expert, so that our
feasible region lies in Rn. More specifically, we have:

X =
{

x : xi ∈ [0, 1];
n∑
i=1

xi = 1
}
.

A feasible vector x then encodes a distribution over experts, where exactly one expert is chosen,
and expert i is chosen with probability xi.

An example of the feasible region is shown in Fig. 4.1.1.

1



x1

x2

expert 1

expert 2

1

10

Figure 4.1.1: An example of the feasible region X in 2D space.

The projection operation can be very complex for an arbitrary convex set X . Ideally we want to
find the projection:

Proj(y) = argmin
x∈X

‖y − x‖2. (4.1.1)

4.2 Support Vector Machine

In this section, we will switch some of the previous notations. The data points are denoted as
x1,x2, . . . ,xT ∈ Rn; the labels yi are binary variables: y1, y2, . . . , yT ; yi ∈ {−1, 1}. A linear clas-
sifier can be considered as a hyperplane with normal vector w ∈ Rn and offset b. The classification
of xi is determined by the hyperplane:

ỹi = sign(w · xi + b). (4.2.2)

4.2.1 Eliminating b by augmenting one dimension

Eq. 4.2.2 can be expressed in a simpler way, by augmenting x and w. Let x+ = [x1, x2, . . . , xn, 1] ∈
Rn+1, and w+ = [w1, w2, . . . , wn, b], therefore:

ỹ = sign(w · x + b) = sign(w+ · x+).

For efficiency, we substitute x and w with the augmented vectors x+ and w+.

4.2.2 Hinge loss

The objective of a linear classifier is to find the hyperplane that “optimally” separates the positive
samples from negative ones. In SVM, such optimality is defined as maximizing the margins, or
minimizing the hinge loss.

w? = argmin
w

T∑
t+1

hinge(xt, yt,w), s.t.‖w‖2 ≤ λ. (4.2.3)

where the hinge function is defined as:

hinge(x, y,w) ≡ max
(
0, 1− y(x ·w)

)
(4.2.4)

2



The hinge function is the least convex upper-bound of the 0− 1 loss function. Both functions are
drawn in Fig. 4.2.2.

1

10

1

10

A) 0-1 loss func!on B) Hinge loss func!on

Figure 4.2.2: Figure A: the 0-1 loss function. Figure B: the hinge loss function.

4.2.3 Online SVM

Given the data points x1,x2, . . .xT ∈ Rn+1, and the corresponding labels y1, y2, . . . , yT ∈ {−1, 1},
the feasible set of the hyperplane W = {w : ‖w‖2 ≤ λ}, and the loss function as hinge function,
we have the algorithm for training SVM in an online fashion:

1. Pick w1 ∈ W arbitrarily.

2. For t = 1, 2, . . . T , the incurred loss is ct(wt) ≡ hinge(xt, yt,wt).

3. Step forward on the gradient direction: ŵt+1 = wt − ηt∇ct(wt).

4. Finally, project ŵt+1 back to the feasible set: wt+1 = ProjW(ŵt+1).

We note that Eq. 4.2.3 is not differentiable. To overcome this problem, we use a “subgradient” in
leiu of the gradient.

4.2.3.1 Subgradient

Let c : I → R be a convex function defined on an open interval of the real line. As shown in
Fig.4.2.3, c is not differentiable at x0. A subgradient of c at x0 is any vector v such that:

∀x : c(x)− c(x0) ≥ v · (x− x0).

The subgradient is not unique. In general, the set of subgradients of c at x0 is a convex set. One
way to think about a subgradient v of c at x0 is that it defines a linear lower bound for c that
equals it at x0, namely,

`v,x0(x) := c(x0) + v · (x− x0).

For the hinge loss function, we can pick a subgradient vt at wt as following:

0, if yt(wt · xt) ≥ 1

−ytxt, if yt(wt · xt) < 1.

3



0
x0

Figure 4.2.3: A convex function and its subgradient. Red solid line is the function f(x). The
subgradient of f at x0 is the derivative of any blue line in the blue region that passes through x0.

4.2.3.2 Projection

For a feasible set W = {w : ‖w‖2 ≤ λ}, the projection from ŵ /∈ W to its nearest point in W can
be done by multiplying ŵ with a scalar:

wt+1 = Proj(ŵt+1) =
ŵt+1 · λ
‖ŵt+1‖

. (4.2.5)

Of course, if ŵ ∈ W then Proj(ŵ) = ŵ.

00

λ

ŵ

w

Figure 4.2.4: An illustration of the projection. Gray disk is the feasible set W with radius λ. ŵ is
projected onto W to have w.

4.3 Parallel Online SVM

In a recent paper [2], Zinkevich et al. proposed a parallel algorithm for Online SVM. In this scenario,
the gradient is computed in a asynchronous way. At round t, the fetched gradient ∇ct−τ (wt−τ )
is the result at τ th previous round. Zinkevich et al. proved that the online learning with delayed
updates converges well. Therefore the parallel online learning can be achieved:

4



1. Choose w1 arbitrarily in W

2. Update wt+1 = ProjW
(
wt − ηt · ∇ct−τ (wt−τ )

)
where ηt ≈

1√
t
, or ηt =

1

t
are common choices.

References

[1] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on Machine Learning, pages 928–936,
2003.

[2] Martin Zinkevich, Alex Smola, and John Langford. Slow learners are fast. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural
Information Processing Systems 22, pages 2331–2339. 2009.

5


