15-854: Approximations Algorithms Lecturer: R. Ravi
Topic: Primal-Dual Algorithms Date: Nov. 21, 2005
Scribe: Daniel Golovin

21.1 Primal-Dual Algorithms

So far, we have seen many algorithms based on linear program (LP) relaxations, typically involving
rounding a given fractional LP solution to an integral solution of approximately the same objective
value. In this lecture, we will look at another approach to LP relaxations, in which we will construct
a feasible integral solution to the LP from scratch, using a related LP to guide our decisions. Our
LP will be called the Primal LP, and the guiding LP will be called the Dual LP.

As we shall see, the PD method is quite powerful. Often, we can use the Primal-Dual (PD) method
to obtain a good approximation algorithm, and then extract a good combinatorial algorithm from
it. Conversely, sometimes we can use the PD method to prove good performance for combinatorial
algorithms, simply by reinterpreting them as PD algorithms. So without further ado...

21.2 Every Primal has a Dual

We begin with a generic covering LP, and illustrate the ideas later with Vertex Cover as an example.
Let [k] := {1,2,...,k}. Suppose we have matrix A € R™*™ and vectors ¢ € R", b € R™. We can
represent the primal LP as

min ), cjz;  subject to
Zj QAijx;j >b;, Vie [m] (Primal)
zj; >0 Vj € [n]

Now suppose we want to develop a lower bound on the optimal value of this LP. One way to do
this is to find constraints that “look like” > ;Cxj > 4, for some Z, using the constraints in the LP.
To do this, note that any convex combination of constraints from the LP is also a valid constraint.
Therefore, if we have non-negative multipliers y; on the constraints, we get a new constraint which
is satisfied by all feasible solutions to the primal LP. That is, if for all 4, > ; ijTj = b;, then

Zyi Zaijxj ZZyz‘bi (21.2.1)
i j :

Note that we require the y;’s to be non-negative, because multiplying an inequality (in this case
Zj a;jx; > b;) by a negative number switches the sign of the inequality. (If a constraint has the
form > ; @ijxzj = b;, then its multiplier y; can be any real number.) Consider equation 21.2.1. If we

ensure y . Y; (ZJ aijxj> < Zj cjxj, we will obtain a lower bound of ), ;b; on the optimal value
of the primal LP. Switching the order of summation, we get >, v; (Ej aij:pj> = >, 2 viaij)
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and can ensure this sum is at most » ;G by requiring the y;’s to satisfy

> wiaij <c¢; Vi€ [n] (21.2.2)

(Note that in the previous step we rely on the fact that the x;’s are non-negative.)

Putting it all together, if the y;’s are non-negative and satisfy constraint 21.2.2, then

Zyzbl < Zyl Zaijxj = Z (Z yiaij> Zj < ZC]'JJ]' (2123)
i i i J

J J
Note that the constraints on the y;’s are linear, as is the lower bound we obtain. Thus we can write

down an LP to find the y;’s giving the best lower bound. This is the dual LP.

max y . y;b; subject to
Yo viai; < ¢ Vj € [n] (Dual)
yi =0 Vi € [m]

In more compact notation:

Primal Dual
minc'z  subject to maxy'b  subject to
Ax >0 yTA <c'
x>0 y=>0

Fact 21.2.1 (LP Monogamy') Given a linear program P, if D is the dual LP of P, then P is
the dual LP of D.

Theorem 21.2.2 (Weak Duality) For any feasible Primal-Dual solution pair (z,y), y'b<c'x
Proof: This follows immediately from our remarks above, specifically equation 21.2.3. [ |

Theorem 21.2.3 (Strong Duality) If either the Primal or Dual have bounded optimal solution,
then both of them do. Moreover, their objective values are equal. That is, if x is optimal for the

primal, and y is optimal for the dual, then y'b=c'x.

We won’t prove the Strong Duality theorem. However, one way to prove it is to look at equation
21.2.3 and note that the inequalities must be tight if y"b = ¢ 2. One can argue that if y'b < ¢'x,
there must be some improvement we can make to either = or y.

Strong Duality gives additional constraints on optimal (x,y) pairs, namely the following equalities,

which are derived by combining equation 21.2.3 with y'b = c¢' .

Sowibi = D i | D aiw;
i i j

!Disclaimer: I invented this name. It’s not standard terminology.
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Combining these equations with the constraints in the primal and dual LPs, we can derive the
complementary slackness conditions.

Theorem 21.2.4 (Complementary Slackness) Let (x,y) be solutions to a primal-dual pair of
LPs with bounded optima. Then x and y are both optimal iff all of the following hold

o Vj € [n], either x; =0 or ), yia;j = ¢;j (Primal Complementary Slackness Conditions)

e Vi€ [m], either y; =0 or 3_; a;;z; = b; (Dual Complementary Slackness Conditions)

21.3 Constructing the Dual: An Example

By now we have covered everything you need to know to mechanically find the dual of any LP.
However, here is some intuition to help with the process.

We start with a covering linear program, P, like the primal above. First, assign a variable y; to
each constraint in P (excluding the z; > 0 constraints). Writing down the objective, max ), y;b;,
is easy. The only tricky part is the dual constraints, y' A < ¢'. For now, let us fix a coordinate
of ¢, say j, and figure out the constraint of the form ) (...) < ¢; in the dual. Note y' A is an row
vector whose j*™ coordinate is the dot product of y and the j* column of A, which we will denote
by aj. This column contains the coefficients for variable x;. Thus we get the constraint yTaj <g¢;.
Lastly, force the y;’s to be non-negative.

To make this concrete, consider the “natural” LP for Vertex Cover. Here, we are given an undirected
graph G = (V| E) whose edges are sets of vertices, each of size two. We associate a variable z,, with
each vertex, and interpret x, = 1 as including v in the solution.

min)_, c,z, subject to
Dovcetv >1 Vee B (VC - LP)
T, >0 YveV

We assign dual variable . to the constraint ) .., > 1. Since b, = 1 for all e, the dual objective
is max ), ye - 1. Now consider the dual constraint corresponding to v, which is y'al < c,. We
can write this as ), ye@e < ¢p. Since ac, = 1 if e is incident on v, and ae,, = 0 otherwise, we can
write this constraint as ) cco(v) Ye < ¢p. The final result is

max . Ye subject to
Yecsw)Ye S YWEV (VC — Dual — LP)
Ye = 0 Vee E



21.4 Duality and Max-Min Relations

Before we get to primal-dual algorithms, observe that strong duality is useful as a min-max relation.
In fact many min-max relations can be proven from it relatively easily. For example, Von Neumann’s
minimax theorem follows easily from it. The max-flow/min-cut theorem also falls right out of LP
duality, if you realize that the natural max-flow LP is dual to the natural min-cut LP and the
min-cut LP has integral basic feasible solutions.

We will prove another min-max relation using the Weak Duality Theorem and the dual LP for
Vertex Cover given above. Suppose we are given an unweighted vertex cover instance, so that
¢y = 1 for all v. Then integral solutions to VC-Dual-LP correspond exactly to matchings in the
input graph. Thus, by weak duality, we conclude that the minimum vertex cover in an unweighted
instance is at least the size of the maximum cardinality matching in the input graph. That is,
in non-decreasing order of cost, we have the maximum cardinality matching (equal to VC-Dual-
IP-OPT), VC-Dual-LP-OPT, VC-LP-OPT, and finally VC-IP-OPT (equal to the Vertex Cover
OPT).

21.5 The Primal-Dual Method

Consider vertex cover. If we could bound the cost of some vertex cover S by p- > _ v for some
dual feasible y, then we immediately obtain a p approximation by weak duality

ew < pY g < p-VCLP-OPT < p:VCIP-OPT
veES e

So we consider dual variables as providing money, specifically > ", y. dollars, and allow the algorithm
to spend up to p ),y dollars to buy a vertex cover. As a simple example, consider we have an
unweighted vertex cover instance G. We find a maximum cardinality matching M, and set y to be
the characteristic vector of M — that is, y. = 1 if e € M, and y. = 0 otherwise. Note that y is dual
feasible. Now, we use y to determine what vertices to buy for our vertex cover as follows: if v is
incident on some vertex of M, buy it, otherwise do not. Let S be the output set of vertices. Then
S is a vertex cover, since if it were not, some edge e could be added to M, contradicting the fact
that it is of maximum cardinality. Now, each edge e = {u,v} € M has y. = 1, so if we charge the
cost of u and v to e = {u,v}, we spend 2y, dollars. It follows that »  .qc, < 2-3 ye, and we
obtain a 2-approximation.

The Primal-Dual Schema We typically devise algorithms (for minimization problems) using
the PD-schema in the following way:

1. Write down an LP relaxation of the problem, and find its dual. Try to find some intuitive
meaning for the dual variables.

2. Start with vectors z = 0,y = 0, which will be dual feasible, but primal infeasible.

3. Until the primal is feasible,



(a) increase? the dual values y; in some controlled fashion until some dual constraint(s) goes
tight (i.e. until ), y;a;; = ¢; for some j), while always maintaining the dual feasibility
of y.

(b) Select some subset of the tight dual constraints, and increase the primal variable corre-
sponding to them by an integral amount.

4. For the analysis, prove that the output pair of vectors (z,y) satisfies ¢’z < p-y'b for as
small a value of p as possible. Keep this goal in mind when deciding how to raise the dual
and primal variables.

Sometimes the output x buys too much, and we can decrease some of its coordinates® to get a
cheaper (feasible) solution z’.

We will apply the primal-dual schema to give a 2-approximation for vertex cover with weighted
vertex costs.

Primal-Dual Algorithm for Vertex Cover
Input: undirected graph G = (V, E) and vertex costs c.
Initialize z =0, y =0
While E # 0
Select nonempty E’ C E arbitrarily.
Raise gy, for each e € E’ uniformly until some dual constraint goes tight.
Let S be the set of vertices corresponding to dual constraints that just went tight.
Set x, = 1 for each v € S, and delete all edges incident on vertices in S from FE.
Output (z,y) and buy vertex set A ={v |z, =1}

Claim 21.5.1 Let x,y be vectors output by the algorithm above. Then x is primal feasible, and y
1$ dual feasible.

Proof: Each edge deleted from F is incident on some vertex v such that x, = 1. The algorithm
only terminates when every edge has been deleted. Thus ) . 2, > 1 for all e € E, and z is
feasible. As for y, no constraint is violated, since once a constraint goes tight, the edges in that
constraint are deleted and thus their y. values are not raised any further. |

Claim 21.5.2 Let x,y be vectors output by the algorithm above. Then c¢'x <2-(y' - T)
Proof: Let A= {v |z, =1}. Then

2Some sophisticated algorithms may sometimes decrease some dual variables, but that is for another day.
3See e.g. the reverse delete step in the algorithm of Agrawal, Klein, & Ravi for the Steiner Forest Problem.



e = E Cy

vEA
= 2| 2w
vEA \e€d(v)
>
ecE \veAne

< Q'Zye
e

The second line follows from the fact that we set x, = 1 only for vertices v corresponding to tight
dual constraints. That is, v € A implies ) . 5(v) Ye = Co- The third line is simply switching the
order of summation, and the last line follows from the fact that |e] = 2 for all e. [ ]

Using weak duality, we immediately obtain the following
Corollary 21.5.3 The algorithm above is a 2-approximation for Weighted Vertex Cover.

Observe that if we select E’' to be a single edge, then we obtain the local-ratio algorithm for
vertex cover. Note how much simpler the proof of the approximation gaurantee is in this case —
no induction was needed. However, we could use an inductive proof to show that at all times,
the cost we have paid is no more than twice the money we have “collected” from the dual, i.e.
cle <2 - (y"- f) at all times during the execution, not just at the end. This idea is useful when
analyzing some primal-dual algorithms.

21.6 Further Reading

The primal dual algorithm for vertex cover presented above is due to Bar-Yehuda and Even [1].
For further reading, there is a book chapter [2] available online. For a more advanced (and more
recent) treatment, a published survey on primal dual algorithms [3], is also available online.
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