
1

Caltech CS184 Winter2005 -- DeHon
1

CS184a:
Computer Architecture

(Structure and Organization)

Day 4: January 12, 2005
Memories….

Caltech CS184 Winter2005 -- DeHon
2

Last Time

• Arithmetic: addition, subtraction
• Reuse:

– pipelining
– bit-serial (vectorization)
– shared datapath elements

• FSMDs
• Area/Time Tradeoffs
• Latency and Throughput

Caltech CS184 Winter2005 -- DeHon
3

Today

• Memory
– features
– design
– technology
– impact on computability

• ALUs
• Virtualization

Caltech CS184 Winter2005 -- DeHon
4

Memory

• What’s a memory?

• What’s special about a memory?

Caltech CS184 Winter2005 -- DeHon
5

Memory Function

• Typical:
– Data Input Bus
– Data Output Bus
– Address

• (location or name)
– read/write control

Caltech CS184 Winter2005 -- DeHon
6

Memory

• Block for storing data for later retrieval

• State element

• What’s different between a memory and
a collection of registers like we’ve been
discussing?

2

Caltech CS184 Winter2005 -- DeHon
7

Collection of Registers

Caltech CS184 Winter2005 -- DeHon
8

Memory Uniqueness

• Cost
• Compact state element
• Packs data very tightly
• At the expense of sequentializing access
• Example of Area-Time tradeoff

– and a key enabler

Caltech CS184 Winter2005 -- DeHon
9

Memory Organization
• Key idea: sharing

– factor out common components among
state elements

– can have big elements if amortize costs
– state element unique small

Caltech CS184 Winter2005 -- DeHon
10

Memory Organization

• Share: Interconnect
– Input bus
– Output bus
– Control routing

• very topology/wire cost
aware design

• Note: local, abuttment
wiring

Caltech CS184 Winter2005 -- DeHon
11

Share Interconnect

• Input Sharing
– wiring
– drivers

• Output Sharing
– wiring
– sensing
– driving

Caltech CS184 Winter2005 -- DeHon
12

Address/Control
• Addressing and Control

– an overhead
– paid to allow this sharing

3

Caltech CS184 Winter2005 -- DeHon
13

Memory Organization

Caltech CS184 Winter2005 -- DeHon
14

Dynamic RAM

• Goes a step further
• Share refresh/restoration logic as well
• Minimal storage is a capacitor
• “Feature” DRAM process is ability to

make capacitors efficiently

Caltech CS184 Winter2005 -- DeHon
15

Some Numbers (memory)
• Unit of area = λ2

– [more next time]
• Register as stand-alone element ≈ 4Kλ2

– e.g. as needed/used last two lectures
• Static RAM cell ≈ 1Kλ2

– SRAM Memory (single ported)
• Dynamic RAM cell (DRAM process) ≈ 100λ2

• Dynamic RAM cell (SRAM process) ≈ 300λ2

Caltech CS184 Winter2005 -- DeHon
16

Memory

• Key Idea
– Memories hold state compactly
– Do so by minimizing key state storage

and amortizing rest of structure
across large array

Caltech CS184 Winter2005 -- DeHon
17

Basic Memory Design Space

• Width
• Depth
• Internal vs.

External Width

Caltech CS184 Winter2005 -- DeHon
18

System Memory Design

• Have a memory capacity to provide
• What are choices?

4

Caltech CS184 Winter2005 -- DeHon
19

System Memory Design

• One monolithic memory?
– Internal vs. external width
– internal banking

• External width
• Separate memory banks (address ports)

Caltech CS184 Winter2005 -- DeHon
20

Yesterday vs. Today
(Memory Technology)

• What’s changed?

Caltech CS184 Winter2005 -- DeHon
21

Yesterday vs. Today
(Memory Technology)

• What’s changed?
– Capacity

• single chip
– Integration

• memory and logic
• dram and logic
• embedded memories

– Room on chip for big memories
– Don’t have to make a chip crossing to get

to memory
Caltech CS184 Winter2005 -- DeHon

22

Important Technology Cost

• IO between chips << IO on chip
– pad spacing
– area vs. perimeter (4s vs. s2)
– wiring technology

• BIG factor in multi-chip system designs
• Memories nice

– very efficient with IO cost vs. internal area

Caltech CS184 Winter2005 -- DeHon
23

Costs Change

• Design space changes when whole
system goes on single chip

• Can afford
– wider busses
– more banks
– memory tailored to application/architecture

• Beware of old (stale) answers
– their cost model was different

Caltech CS184 Winter2005 -- DeHon
24

What is Importance of
Memory?

• Radical Hypothesis:
– Memory is simply a very efficient

organization which allows us to store data
compactly

• (at least, in the technologies we’ve seen to date)
– A great engineering trick to optimize

resources
• Alternative:

– memory is a primary

5

Caltech CS184 Winter2005 -- DeHon
25

5/12/05 Lecture Ended Here

Caltech CS184 Winter2005 -- DeHon
26

Sharing

Caltech CS184 Winter2005 -- DeHon
27

Last Time

• Given a task: y=Ax2 +Bx +C
• Saw how to share primitive operators
• Got down to one of each

Caltech CS184 Winter2005 -- DeHon
28

Very naively

• Might seem we need one of each
different type of operator

Caltech CS184 Winter2005 -- DeHon
29

..But

• Doesn’t fool us
• We already know that nand gate (and

many other things) are universal
• So, we know, we can build a universal

compute operator

Caltech CS184 Winter2005 -- DeHon
30

This Example

• y=Ax2 +Bx +C
• Know a single adder will do

6

Caltech CS184 Winter2005 -- DeHon
31

Adder Universal?
• Assuming interconnect:

– (big assumption as we’ll see later)
– Consider:

• What’s c?

A: 001a
B: 000b
S: 00cd

Caltech CS184 Winter2005 -- DeHon
32

Practically

• To reduce (some) interconnect
• and to reduce number of operations
• do tend to build a bit more general

“universal” computing function

Caltech CS184 Winter2005 -- DeHon
33

Arithmetic Logic Unit (ALU)

• Observe:
– with small tweaks can get many functions

with basic adder components

Caltech CS184 Winter2005 -- DeHon
34

ALU

Caltech CS184 Winter2005 -- DeHon
35

ALU Functions
• A+B w/ Carry
• B-A
• A xor B (squash

carry)
• A*B (squash carry)
• /A
• B<<1

Caltech CS184 Winter2005 -- DeHon
36

Table Lookup Function

• Observe 2: only 223=256 functions of 3
inputs
– 3-inputs = A, B, carry in from lower

• Two, 3-input Lookup Tables
– give all functions of 2-inputs and a cascade
– 8b to specify function of each lookup table

• LUT = LookUp Table

7

Caltech CS184 Winter2005 -- DeHon
37

What does this mean?

• With only one active component
– ALU, nand gate, LUT

• Can implement any function
– given appropriate

• state registers
• muxes (interconnect)
• Control

• Compare: Universal Turing Machine
Caltech CS184 Winter2005 -- DeHon

38

Revisit Example

• We do see a proliferation of memory
and muxes -- what do we do about that?

Caltech CS184 Winter2005 -- DeHon
39

Virtualization

Caltech CS184 Winter2005 -- DeHon
40

Back to Memories

• State in memory more compact than “live”
registers
– shared input/output/drivers

• If we’re sequentializing, only need one
(few) at a time anyway
– i.e. sharing compute unit, might as well share

interconnect
• Shared interconnect also gives muxing

function

Caltech CS184 Winter2005 -- DeHon
41

ALU + Memory

Caltech CS184 Winter2005 -- DeHon
42

What’s left?

8

Caltech CS184 Winter2005 -- DeHon
43

Control

• Still need that controller which directed
which state, went where, and when

• Has more work now,
– also say what operations for compute unit

Caltech CS184 Winter2005 -- DeHon
44

Implementing Control
• Implementing a single, fixed

computation
– might still just build a custom FSM

Caltech CS184 Winter2005 -- DeHon
45

…and Programmable
• At this point, it’s a small leap to say

maybe the controller can be
programmable as well

• Then have a building block which can
implement anything
– within state and control programmability

bounds

Caltech CS184 Winter2005 -- DeHon
46

Simplest Programmable
Control

• Use a memory to “record”
control instructions

• “Play” control with sequence

Caltech CS184 Winter2005 -- DeHon
47

Our “First” Programmable
Architecture

Caltech CS184 Winter2005 -- DeHon
48

Instructions

• Identify the bits which control the
function of our programmable device as:
–Instructions

9

Caltech CS184 Winter2005 -- DeHon
49

What have we done?

• Taken a computation: y=Ax2 +Bx +C
• Turned it into operators and

interconnect

• Decomposed operators into a basic
primitive: Additions, ALU, ...nand

Caltech CS184 Winter2005 -- DeHon
50

What have we done?
• Said we can implement it on as few as

one of compute unit {ALU, LUT, nand}

• Added an instruction to tell single,
universal unit how to act as each
operator in original graph

• Added a unit for state

Caltech CS184 Winter2005 -- DeHon
51

Virtualization

• We’ve virtualized the computation
• No longer need one physical compute

unit for each operator in original
computation

• Can suffice with shared operator(s)
• ….and a description of how each

operator behaved
• and a place to store the intermediate

data between operators
Caltech CS184 Winter2005 -- DeHon

52

Virtualization

Caltech CS184 Winter2005 -- DeHon
53

Why Interesting?
• Memory compactness
• This works and was interesting because

– the area to describe a computation, its
interconnect, and its state

– is much smaller than the physical area to
spatially implement the computation

• e.g. traded multiplier for
– few memory slots to hold state
– few memory slots to describe operation
– time on a shared unit (ALU)

Caltech CS184 Winter2005 -- DeHon
54

Admin Comments

• Do have class on Friday
• Reading for next Wed. is online

• From Info handout:

10

Caltech CS184 Winter2005 -- DeHon
55

Big Ideas
[MSB Ideas]

• Memory: efficient way to hold state
• State can be << computation [area]
• Resource sharing: key trick to reduce area
• Memories are a great example of

resource sharing
• Memory key tool for Area-Time tradeoffs
• “configuration” signals allow us to

generalize the utility of a computational
operator

Caltech CS184 Winter2005 -- DeHon
56

Big Ideas
[MSB-1 Ideas]

• Tradeoffs in memory organization
• Changing cost of memory organization

as we go to on-chip, embedded
memories

• ALUs and LUTs as universal compute
elements

• First programmable computing unit

