CS184a:
Computer Architecture
(Structure and Organization)

Day 4: January 12, 2005

Last Time

Arithmetic: addition, subtraction
* Reuse:

— pipelining

— bit-serial (vectorization)

— shared datapath elements
FSMDs

Area/Time Tradeoffs

 Latency and Throughput

Caltech CS184 Winter2005 -- DeHon

Memories....
Y
I ')
N ¥
Caltech CS184 Winter2005 -- DeHon \J ﬁ/
Today
* Memory
— features
— design
— technology
—impact on computability
e ALUs

* Virtualization

Memory

* What's a memory?

» What's special about a memory?

Memory Function o

in
» Typical: '1'
— Data Input Bus i
— Data Output Bus Memory
— Address A_/_.._
« (location or name)
— read/write control —

Dout i

Caltech CS184 Winter2005 -- DeHon

Memory

« Block for storing data for later retrieval
* State element

» What's different between a memory and
a collection of registers like we've been
discussing?

Collection of Registers

oin

Dot 7
Caltech CS184 Winter2005 -- C

Memory Uniqueness

» Cost

» Compact state element

Packs data very tightly

At the expense of sequentializing access
Example of Area-Time tradeoff

—and a key enabler

Caltech CS184 Winter2005 -- DeHon

Memory Organization

» Key idea: sharing
— factor out common components among
state elements
— can have big elements if amortize costs
— state element unique - small Memoysieen O

Dat
Write
Read HIHITHIH IHIH TH TH]
HIHIHIHIHIHIHIH 1
HIHIHIHIHIHTHTH |
HIHIHIHIHIHTH TH 1
A HIHIH IHIH [HIH |
H IH IH IH [H IH IH IH]
HIHITHITHTHITH THTH]
Caltech CS184 Winter2005 - DeHon A IHIHIHTHTHTH TH1

Memory Organization

Share Interconnect

) YYVYVYVYVVVVY

* Input Sharing HITH THITH TH TH THTH]
— wiring HTH THTHTH TH TH TH]
_ drivers HIH THTH TH TH TH TH]

_ HTHTHTH TH TH TH TH]

» Output Sharing _—_HTHTHTHITHTHTHTH]
— wifing HTHTHTH TH TH TH TH]

) HIH THTH TH TH TH TH]
—sensing HTHTH IR TH TR TH IR
—driving VVVVVVVV

[N
[

Caltech CS184 Winter2005 -- DeHon

HIHIH IH IHIH IH [H 1
. HIHIHIH IHIHIH [H |
» Share: Interconnect imitmimiteiieiimite]
— Input bus HIHTHTHITH TH TH TH]
HIHIHIHIHIHIH IH 1
— Output bus HTHIH THTH TH TH TH]
. HIHIHIH IHIH IH [H |
— Control routing M THTH TH TH TR TR TR
* very topology/wire cost
aware design
* Note: local, abuttment
wiring
10
Caltech CS184 Winter2005 -- DeHon
Address/Control
 Addressing and Control
—an overhead
— paid to allow this sharing
R.'W'A
VAAAAAAA
HIHIHIHIH IHIHIH 1
HIHIHIHIHIHIHIH 1
HIHIHIHIHIHIHIH 1
HIHIHIHIHIHIHIH 1
HIHIHIHIH IHTH TH 1
HIHIHIHIH IHTHTH 1
HIHIHIHIHIHTH TH 1
HIHIHIHIHIHTH TH 1
VVVVVVVV

Caltech CS184 Winter2005 -- DeHon

Memory Organization

A1)
LIRS . i
RwW !
HITHTHIH TH TH IR TH]
HTHIHIHIH THIHTH]
HIHTHIH I THIHTH]
HIH TH IR TH IR IR TH]
HIH TH I TH TH TH TH]
HITHIH I IR THIHIH]
HTHIHIHIH TH IR TH]
HIH TH ITH TH THTH TH]
13
Caltech CS184 Wi Dout

Dynamic RAM

Y-
» Goes a step further - E
* Share refresh/restoration logic as well 5
« Minimal storage is a capacitor ¥
N
» “Feature” DRAM process is ability to % i
make capacitors efficiently ™
T
NI
—H 2l
™ ¢
Caltech CS184 Winter2(I I 4

Some Numbers (memory)

 Unit of area = A?
— [more next time]
 Register as stand-alone element ~ 4KA\?2
—e.g. as needed/used last two lectures
« Static RAM cell ~ 1K\?
— SRAM Memory (single ported)
« Dynamic RAM cell (DRAM process) ~ 10012
e Dynamic RAM cell (SRAM process) ~ 30012

15

Caltech CS184 Winter2005 -- DeHon

Memory

» Key Idea
—Memories hold state compactly

—Do so by minimizing key state storage
and amortizing rest of structure
across large array

Basic Memory Design Space

» Width Y —
» Depth m
Sl cmismicmi sl i)

« Internal vs. TR IR IR T T T T
. T T T T T T T

External Width M T T T TH T T
T TR I T T T

M T TH T T T T

T T T T T T T

T T TR TH TR

Caltech CS184 Winter2005 -- DeHon

Caltech CS184 Winter2005 -- DeHon 16
System Memory Design
« Have a memory capacity to provide
* What are choices?
18

Caltech CS184 Winter2005 -- DeHon

System Memory Design

* One monolithic memory?
— Internal vs. external width
— internal banking

 External width
» Separate memory banks (address ports)

19
ch CS184 Winter2005 -- DeHon

Yesterday vs. Today

(Memory Technology)
* What's changed?
— Capacity
« single chip
— Integration
» memory and logic
» dram and logic
* embedded memories
—Room on chip for big memories
— Don't have to make a chip crossing to get

to memory 21
©S184 Winter200E- DeHon

Yesterday vs. Today
(Memory Technology)
* What's changed?

20
Caltech CS184 Winter2005 -- DeHon

Important Technology Cost

* 10 between chips << 10 on chip

— pad spacing

— area vs. perimeter (4s vs. s?)

— wiring technology
» BIG factor in multi-chip system designs
* Memories nice

— very efficient with 10 cost vs. internal area

Costs Change

Design space changes when whole
system goes on single chip

» Can afford

— wider busses

— more banks

— memory tailored to application/architecture
» Beware of old (stale) answers

— their cost model was different

23
Caltech CS184 Winter2005 -- DeHon

What is Importance of
Memory?

» Radical Hypothesis:

— Memory is simply a very efficient
organization which allows us to store data
compactly

« (at least, in the technologies we've seen to date)

— A great engineering trick to optimize
resources

« Alternative:
—memory is a primary

24
1 CS184 Winter2005 -- DeHon

5/12/05 Lecture Ended Here

25

Caltech CS184 Winter2005 -- DeHon

Sharing

26

Caltech CS184 Winter2005 -- DeHon

Last Time

« Given a task: y=Ax? +Bx +C
» Saw how to share primitive operators

* Got down to one of each
x*x reg.

Y reg.

om>

Bx+C reg.

Very naively

» Might seem we need one of each
different type of operator

28

..But

» Doesn't fool us

» We already know that nand gate (and
many other things) are universal

» So, we know, we can build a universal
compute operator

29
Caltech CS184 Winter2005 -- DeHon

This Example
* y=Ax? +Bx +C
» Know a single adder will do

x*x reg.

Y reg.

om>

Bx+C reg.

Adder Universal?

» Assuming interconnect:
— (big assumption as we’ll see later)
— Consider: A: 001a)
B: 000b
S: 00c
* What's c?

B3 A3 B2 A2 B1 Al BO AO

B H H H H ’
83 S2 81 S0

Practically

» To reduce (some) interconnect
 and to reduce number of operations

« do tend to build a bit more general
“universal” computing function

32

Caltech CS184 Winter2005 -- DeHon

Arithmetic Logic Unit (ALU)

* Observe:

— with small tweaks can get many functions
with basic adder components

vy
O O

33

ALU

34

ALU Functions

* A+B w/ Carry

* B-A

« A xor B (squash
carry)

* A*B (squash carry)

o /A

e B<<1

35

Caltech CS184 Winter2005 -- DeHon

Table Lookup Function

» Observe 2: only 22°=256 functions of 3
inputs
— 3-inputs = A, B, carry in from lower

* Two, 3-input Lookup Tables
— give all functions of 2-inputs and a cascade
— 8b to specify function of each lookup table

e LUT = LookUp Table

36

What does this mean?

» With only one active component
—ALU, nand gate, LUT
» Can implement any function
— given appropriate
* state registers
e muxes (interconnect)

* Control
» Compare: Universal Turing Machine
37
Caltech CS184 Winter2005 -- DeHon

Revisit Example

X*X reg.

X
A Y reg.
B —-
c
L
L
Bx+C reg.

* We do see a proliferation of memory
and muxes -- what do we do about that?

38

Caltech CS184 Winter2005 -- DeHon

Virtualization

39

Back to Memories

« State in memory more compact than “live”
registers
— shared input/output/drivers
« If we're sequentializing, only need one
(few) at a time anyway
—i.e. sharing compute unit, might as well share
interconnect
« Shared interconnect also gives muxing
function 0

Caltech CS184 WinterZ

ALU + Memory

41

Caltech CS184 Winter2005 -- DeHon

What's left?

42

Caltech CS184 Winter2005 -- DeHon

Control

« Still need that controller which directed
which state, went where, and when

* Has more work now,
— also say what operations for compute unit

Implementing Control

» Implementing a single, fixed
computation
— might still just build a custom FSM

44

Caltech CS184 Winter2005 -- DeHon

...and Programmable

« At this point, it's a small leap to say
maybe the controller can be
programmable as well

« Then have a building block which can
implement anything

— within state and control programmability
bounds

Simplest Programmable
Control

» Use a memory to “record”

control instructions m
* “Play” control with sequence

Control
Signals

Our “First” Programmable
Architecture

Aaddr |
Arw
D | Baddr
-A Brw

o]

Caltech CS184)

Caltech CS184 Winter2005 -- DeHon

Instructions

« |dentify the bits which control the
function of our programmable device as:

—Instructions —_—
F‘C d:_iT\r
W

A D E:‘dﬁr

What have we done?

« Taken a computation: Yy=Ax2 +Bx +C
» Turned it into operators and

interconnect xﬂ}v
A
c
B

« Decomposed operators into a basic
primitive: Additions, ALU, ...nand

49

Caltech CS184 Winter2005 -- DeHon

Caltec

ch CS184 Winter2005 -- DeHon

What have we done?

» Said we can implement it on as few as
one of compute unit {ALU, LUT, nand}

* Added a unit for state

* Added an instruction to tell single,
universal unit how to act as each
operator in original graph

Virtualization

» We've virtualized the computation
No longer need one physical compute
unit for each operator in original
computation
» Can suffice with shared operator(s)
and a description of how each
operator behaved
» and a place to store the intermediate
N _(Jngﬁt‘%}pe"gween operators 51

eHon

Why Interesting?

* Memory compactness
This works and was interesting because

—the area to describe a computation, its
interconnect, and its state

—is much smaller than the physical area to
spatially implement the computation
* e.g. traded multiplier for
— few memory slots to hold state
— few memory slots to describe operation
—time on a shared unit (ALU) 53

Caltech CS184 Winter2005 -- DeHon

Virtualization

52

Admin Comments

» Do have class on Friday
» Reading for next Wed. is online

* From Info handout:

Writenps should be done in electronic form, using CAD or drawing tools where appropriate.

Electronic submission will be preferred (and may be required for some assignments

54

operator 55
ch CS184 Winter2005 -- DeHon

Big Ideas
[MSB Ideas]

Memory: efficient way to hold state
State can be << computation [area]
Resource sharing: key trick to reduce area * Changing cost of memory organization
Memories are a great example of as we go to on-chip, embedded

Big Ideas
[MSB-1 Ideas]

Tradeoffs in memory organization

resource sharing memories _
Memory key tool for Area-Time tradeoffs * éllélrfe enl?sd LUTs as universal compute

“configuration” signals allow us to

generalize the utility of a computational * First programmable computing unit

Caltech CS184 Winter2005 -- DeHon

