CS184a:
Computer Architecture
(Structure and Organization)

Day 4: January 12, 2005

Last Time

Arithmetic: addition, subtraction
* Reuse:

— pipelining

— bit-serial (vectorization)

— shared datapath elements
FSMDs

Area/Time Tradeoffs

 Latency and Throughput
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Memories....
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Today
* Memory
— features
— design
— technology
—impact on computability
e ALUs

* Virtualization

Memory

* What's a memory?

» What's special about a memory?

Memory Function o

in
» Typical: '1'
— Data Input Bus i
— Data Output Bus Memory
— Address A_/_.._
« (location or name)
— read/write control —

Dout i
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Memory

« Block for storing data for later retrieval
* State element

» What's different between a memory and
a collection of registers like we've been
discussing?




Collection of Registers

oin

Dot 7
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Memory Uniqueness

» Cost

» Compact state element

Packs data very tightly

At the expense of sequentializing access
Example of Area-Time tradeoff

—and a key enabler

Caltech CS184 Winter2005 -- DeHon

Memory Organization

» Key idea: sharing
— factor out common components among
state elements
— can have big elements if amortize costs
— state element unique - small  Memoysieen O

Dat
Write
Read HIHITHIH IHIH TH TH ]
HIHIHIHIHIHIHIH 1
HIHIHIHIHIHTHTH |
HIHIHIHIHIHTH TH 1
A HIHIH IHIH [HIH |
H IH IH IH [H IH IH IH ]
HIHITHITHTHITH THTH]
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Memory Organization

Share Interconnect

) YYVYVYVYVVVVY

* Input Sharing HITH THITH TH TH THTH ]
— wiring HTH THTHTH TH TH TH ]
_ drivers HIH THTH TH TH TH TH ]

_ HTHTHTH TH TH TH TH]

» Output Sharing _—_HTHTHTHITHTHTHTH]
— wifing HTHTHTH TH TH TH TH]

) HIH THTH TH TH TH TH]
—sensing HTHTH IR TH TR TH IR
—driving VVVVVVVV

[N
[
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HIHIH IH IHIH IH [H 1
. HIHIHIH IHIHIH [H |
» Share: Interconnect imitmimiteiieiimite]
— Input bus HIHTHTHITH TH TH TH]
HIHIHIHIHIHIH IH 1
— Output bus HTHIH THTH TH TH TH ]
. HIHIHIH IHIH IH [H |
— Control routing M THTH TH TH TR TR TR
* very topology/wire cost
aware design
* Note: local, abuttment
wiring
10
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Address/Control
 Addressing and Control
—an overhead
— paid to allow this sharing
R.'W'A
VAAAAAAA
HIHIHIHIH IHIHIH 1
HIHIHIHIHIHIHIH 1
HIHIHIHIHIHIHIH 1
HIHIHIHIHIHIHIH 1
HIHIHIHIH IHTH TH 1
HIHIHIHIH IHTHTH 1
HIHIHIHIHIHTH TH 1
HIHIHIHIHIHTH TH 1
VVVVVVVV
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Memory Organization

A1)
LIRS . i
RwW !
HITHTHIH TH TH IR TH]
HTHIHIHIH THIHTH]
HIHTHIH I THIHTH]
HIH TH IR TH IR IR TH]
HIH TH I TH TH TH TH]
HITHIH I IR THIHIH]
HTHIHIHIH TH IR TH]
HIH TH ITH TH THTH TH ]
13
Caltech CS184 Wi Dout

Dynamic RAM

Y-
» Goes a step further - E
* Share refresh/restoration logic as well 5
« Minimal storage is a capacitor ¥
N
» “Feature” DRAM process is ability to % i
make capacitors efficiently ™
T
NI
—H 2l
™ ¢
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Some Numbers (memory)

 Unit of area = A?
— [more next time]
 Register as stand-alone element ~ 4KA\?2
—e.g. as needed/used last two lectures
« Static RAM cell ~ 1K\?
— SRAM Memory (single ported)
« Dynamic RAM cell (DRAM process) ~ 10012
e Dynamic RAM cell (SRAM process) ~ 30012

15
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Memory

» Key Idea
—Memories hold state compactly

—Do so by minimizing key state storage
and amortizing rest of structure
across large array

Basic Memory Design Space

» Width Y —
» Depth m
Sl cmismicmi sl i)

« Internal vs. TR IR IR T T T T
. T T T T T T T

External Width M T T T TH T T
T TR I T T T

M T TH T T T T

T T T T T T T

T T TR TH TR
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System Memory Design
« Have a memory capacity to provide
* What are choices?
18
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System Memory Design

* One monolithic memory?
— Internal vs. external width
— internal banking

 External width
» Separate memory banks (address ports)

19
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Yesterday vs. Today

(Memory Technology)
* What's changed?
— Capacity
« single chip
— Integration
» memory and logic
» dram and logic
* embedded memories
—Room on chip for big memories
— Don't have to make a chip crossing to get

to memory 21
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Yesterday vs. Today
(Memory Technology)
* What's changed?

20
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Important Technology Cost

* 10 between chips << 10 on chip

— pad spacing

— area vs. perimeter (4s vs. s?)

— wiring technology
» BIG factor in multi-chip system designs
* Memories nice

— very efficient with 10 cost vs. internal area

Costs Change

Design space changes when whole
system goes on single chip

» Can afford

— wider busses

— more banks

— memory tailored to application/architecture
» Beware of old (stale) answers

— their cost model was different

23
Caltech CS184 Winter2005 -- DeHon

What is Importance of
Memory?

» Radical Hypothesis:

— Memory is simply a very efficient
organization which allows us to store data
compactly

« (at least, in the technologies we've seen to date)

— A great engineering trick to optimize
resources

« Alternative:
—memory is a primary

24
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5/12/05 Lecture Ended Here

25
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Sharing

26
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Last Time

« Given a task: y=Ax? +Bx +C
» Saw how to share primitive operators

* Got down to one of each
x*x reg.

Y reg.

om>

Bx+C reg.

Very naively

» Might seem we need one of each
different type of operator

28

..But

» Doesn't fool us

» We already know that nand gate (and
many other things) are universal

» So, we know, we can build a universal
compute operator

29
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This Example
* y=Ax? +Bx +C
» Know a single adder will do

x*x reg.

Y reg.

om>

Bx+C reg.




Adder Universal?

» Assuming interconnect:
— (big assumption as we’ll see later)
— Consider: A: 001a )
B: 000b
S: 00c
* What's c?

B3 A3 B2 A2 B1 Al BO AO

B H H H H ’
83 S2 81 S0

Practically

» To reduce (some) interconnect
 and to reduce number of operations

« do tend to build a bit more general
“universal” computing function

32
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Arithmetic Logic Unit (ALU)

* Observe:

— with small tweaks can get many functions
with basic adder components

vy
O O

33

ALU

34

ALU Functions

* A+B w/ Carry

* B-A

« A xor B (squash
carry)

* A*B (squash carry)

o /A

e B<<1

35
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Table Lookup Function

» Observe 2: only 22°=256 functions of 3
inputs
— 3-inputs = A, B, carry in from lower

* Two, 3-input Lookup Tables
— give all functions of 2-inputs and a cascade
— 8b to specify function of each lookup table

e LUT = LookUp Table

36




What does this mean?

» With only one active component
—ALU, nand gate, LUT
» Can implement any function
— given appropriate
* state registers
e muxes (interconnect)

* Control
» Compare: Universal Turing Machine
37
Caltech CS184 Winter2005 -- DeHon

Revisit Example

X*X reg.

X
A Y reg.
B —-
c
L
L
Bx+C reg.

* We do see a proliferation of memory
and muxes -- what do we do about that?

38
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Virtualization

39

Back to Memories

« State in memory more compact than “live”
registers
— shared input/output/drivers
« If we're sequentializing, only need one
(few) at a time anyway
—i.e. sharing compute unit, might as well share
interconnect
« Shared interconnect also gives muxing
function 0
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ALU + Memory

41
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What's left?

42
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Control

« Still need that controller which directed
which state, went where, and when

* Has more work now,
— also say what operations for compute unit

Implementing Control

» Implementing a single, fixed
computation
— might still just build a custom FSM

44
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...and Programmable

« At this point, it's a small leap to say
maybe the controller can be
programmable as well

« Then have a building block which can
implement anything

— within state and control programmability
bounds

Simplest Programmable
Control

» Use a memory to “record”

control instructions m
* “Play” control with sequence

Control
Signals

Our “First” Programmable
Architecture

Aaddr |
Arw
D | Baddr
-A Brw

o]

Caltech CS184)
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Instructions

« |dentify the bits which control the
function of our programmable device as:

—Instructions —_—
F‘C d:_iT\r
W

A D E:‘dﬁr




What have we done?

« Taken a computation: Yy=Ax2 +Bx +C
» Turned it into operators and

interconnect xﬂ}v
A
c
B

« Decomposed operators into a basic
primitive: Additions, ALU, ...nand

49
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What have we done?

» Said we can implement it on as few as
one of compute unit {ALU, LUT, nand}

* Added a unit for state

* Added an instruction to tell single,
universal unit how to act as each
operator in original graph

Virtualization

» We've virtualized the computation
No longer need one physical compute
unit for each operator in original
computation
» Can suffice with shared operator(s)
 ....and a description of how each
operator behaved
» and a place to store the intermediate
N _(Jngﬁt‘%}pe"gween operators 51
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Why Interesting?

* Memory compactness
This works and was interesting because

—the area to describe a computation, its
interconnect, and its state

—is much smaller than the physical area to
spatially implement the computation
* e.g. traded multiplier for
— few memory slots to hold state
— few memory slots to describe operation
—time on a shared unit (ALU) 53
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Virtualization

52

Admin Comments

» Do have class on Friday
» Reading for next Wed. is online

* From Info handout:

Writenps should be done in electronic form, using CAD or drawing tools where appropriate.

Electronic submission will be preferred (and may be required for some assignments

54




operator 55
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Big Ideas
[MSB Ideas]

Memory: efficient way to hold state
State can be << computation [area]
Resource sharing: key trick to reduce area * Changing cost of memory organization
Memories are a great example of as we go to on-chip, embedded

Big Ideas
[MSB-1 Ideas]

Tradeoffs in memory organization

resource sharing memories _
Memory key tool for Area-Time tradeoffs * éllélrfe enl?sd LUTs as universal compute

“configuration” signals allow us to

generalize the utility of a computational * First programmable computing unit
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