CS184a: Computer Architecture (Structure and Organization)

Day 2: January 5, 2003 Logic and FSM Review

Caltech CS184 Winter2005 -- DeHor

Last Time

- Computational Design as an Engineering Discipline
- Importance of Costs

Caltach CS184 Winter2005 -- DeHo

Today

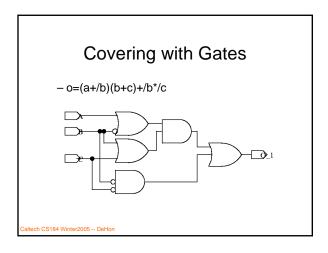
- Simple abstract computing building blocks
 - gates, boolean logic
 - registers, RTL
- · Logic in Gates
 - optimization
 - properties
 - costs
- Sequential Logic

altech CS184 Winter2005 -- DeHor

Stateless Functions/Comb. Logic

- Compute some "function"
 - $-f(i0,i1,...in) \rightarrow o0,o1,...om$
- Each unique input vector
 - implies a particular, deterministic, output vector

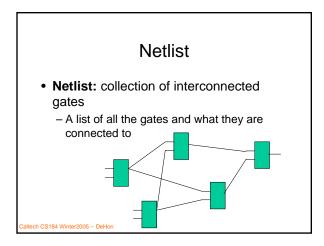
Caltech CS184 Winter2005 -- DeHor

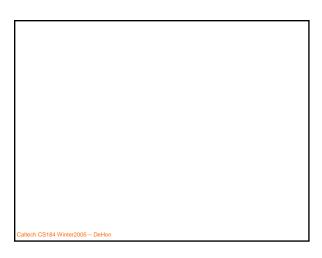

Specification in Boolean logic

- o=a+b
- -o=/(a*b)
- o=a*/b
- -o=a*/b+b
- -o=a*b+b*c+d*e+/b*f + f*/a+abcdef
- -o=(a+b)(/b+c)+/b*/c

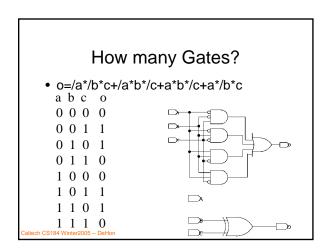
Caltech CS184 Winter2005 -- DeHor

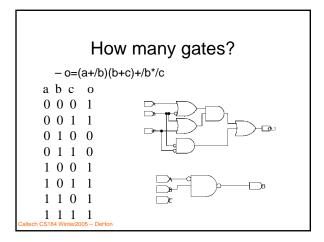
Implementation in Gates


- Gate: small Boolean function
- Goal: assemble gates to cover our desired Boolean function
- Collection of gates should implement same function
- *I.e.* collection of gates and Boolean function should have same Truth Table



Equivalence


- There is a canonical specification for a Boolean function
 - its Truth Table
- Two expressions, gate netlists, a gate netlist and an expression -- are the same iff.
 - They have the same truth table


Caltech CS184 Winter2005 -- DeHon

Truth Table • o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c a b c o 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 Caltech CS184 Winter2005 -- DeHon

Engineering Goal

- Minimize resources

 area, gates
- Exploit structure of logic
- "An Engineer can do for a dime what everyone else can do for a dollar."

Caltech CS184 Winter2005 -- DeHon

Sum of Products

- o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c
- o=(a+b)(/b+/c)- a*b+a*/c+b*/c
- o=(a+/b)(b+c)+/b*/c
 a*b+a*c+/b*c +/b*/c

Caltech CS184 Winter2005 -- DeHor

Minimum Sum of Products

• o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c

/b*c + b*/c

Caltech CS184 Winter2005 -- DeHon

Minimum Sum of Products

• o=(a+b)(/b+/c) a*/b+a*/c+b*/c

a*/b+a*/c+b*/c

a*/b + b*/c

 $\begin{array}{c} ab \\ 00\ 01\ 11\ 10 \\ c \quad 1 \quad 0 \quad 0 \quad 1 \\ \end{array}$

altech CS184 Winter2005 -- DeHo

Redundant Terms

o=(a+b)(/b+/c)- a*/b+a*/c+b*/c

- a*/b + b*/c

There is a Minimum Area Implementation

- o=(a+b)(/b+/c)
 - a*/b+a*/c+b*/c
 - a*/b + b*/c

Caltech CS184 Winter2005 -- DeHor

There is a Minimum Area Implementation

- Consider all combinations of less gates:
 - any smaller with same truth table?
 - There must be a smallest one.

Caltech CS184 Winter2005 -- DeHor

Not Always MSP

- o=(a+b)(c+d)
 a*b+a*c+b*c+b*d
 3 2-input gates
 7 2-input gates
- Product of Sums smaller...

Caltech CS184 Winter2005 -- DeHon

Minimize Area

- Area minimizing solutions depends on the technology cost structure
- Consider:
 - I1: ((a*b) + (c*d))*e*f
 - I2: ((a*b*e*f)+(c*d*e*f))
- Area:
 - I1: 2*A(and2)+1*A(or2)+1*A(and3)
 - I2: 2*A(and4)+1*A(or2)

Caltech CS184 Winter2005 -- DeHon

Minimize Area

- I1: ((a*b) + (c*d))*e*f
- -12: ((a*b*e*f)+(c*d*e*f))
- Area:
 - I1: 2*A(and2)+1*A(or2)+1*A(and3)
 - I2: 2*A(and4)+1*A(or2)
- all gates take unit area:
 - \Box A(I2)=3 < A(I1)=4
- gate size proportional to number of inputs:
 - \Box A(I1)=2*2+2+3=9 < A(I2)=2*4+2=10

Caltech CS184 Winter2005 -- DeHor

Best Solution Depends on Costs

- This is a simple instance of the general point:
 - ...When technology costs change
 - → the optimal solution changes.
- In this case, we can develop an automated decision procedure which takes the costs as a parameter.

Don't Cares

• Sometimes will have incompletely specified functions:

a	b	c	O	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	X	
1	0	0	X	
1	0	1	0	
1	1	0	0	
1	1	.1	0	

Don't Cares

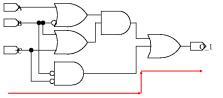
• Will want to pick don't care values to minimize implementation costs:

a b c	0	a b c	O
0 0 0	1	0 0 0	1
0 0 1	1	0 0 1	1
0 1 0	1	0 1 0	1
0 1 1	X	0 1 1	1
1 0 0	X	1 0 0	0
1 0 1	0	1 0 1	0
1 1 0	0	1 1 0	0
Caltech CS184 Winter2065 BeHon	0	1 1 1	0

NP-hard in General

- · Logic Optimization
 - Two Level Minimization
 - Covering w/ reconvergent fanout
- · Are NP-hard in general
 - ...but that's not to say it's not viable to find an optimal solution.
- Cover how to attack in CS137
 - can point you at rich literature
 - can find software to do it for you

Caltech CS184 Winter2005 -- DeHor

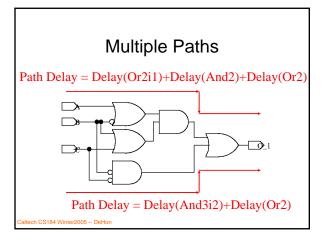

Delay in Gates

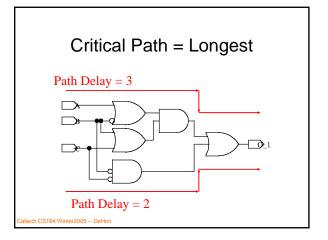
- Simple model:
 - each gate contributes a fixed delay for passing through it
 - can be different delay for each gate type
 - e.g.
 - inv = 50ps
 - nand2=100ps
 - nand3=120ps
 - and2=130ps

Caltech CS184 Winter2005 -- DeHor

Path Delay

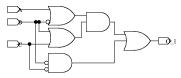
• Simple Model: Delay along path is the sum of the delays of the gates in the path




Path Delay = Delay(And3i2)+Delay(Or2)

altech CS184 Winter2005 -- DeHo

Critical Path


- · Path lengths in circuit may differ
- Worst-case performance of circuit determined by the longest path
- Longest path designated Critical Path

Critical Path

- · There is always a set of critical paths
 - set such that the path length of the members is at least as long as any other path length
- · May be many such paths

Minimum Delay

- There is a minimum delay for a given function and technology cost.
- Like area:
 - consider all circuits of delay 1, 2,
 - Work from 0 time (minimum gate delay) up
 - stop when find a function which implements the desired logic function
 - by construction no smaller delay implements function

Caltech CS184 Winter2005 -- DeHo

Delay also depend on Costs

- Consider again:
 - 11: ((a*b) + (c*d))*e*f
 - 12: ((a*b*e*f)+(c*d*e*f))
- · Delay:
 - I1: D(and2)+D(or2)+D(and3)
 - I2: D(and4)+D(or2)

Caltech CS184 Winter2005 -- DeHor

Delay also depend on Costs

- Delay:
 - I1: D(and2)+D(or2)+D(and3)
 - I2: D(and4)+D(or2)
- D(and2)=130ps, D(and3)=150ps, D(and4)=170ps
 D(I2)=(170+D(or2))<D(I1)=(130+150+D(or2))
- D(and2)=90ps, D(and3)=100ps, D(and4)=200ps
 D(I2)=(200+D(or2))>D(I1)=(90+100+D(or2))

Delay and Area Optimum Differ

- I1: ((a*b) + (c*d))*e*f
- 12: ((a*b*e*f)+(c*d*e*f))
- D(and2)=130ps, D(and3)=150ps, D(and4)=170ps
 □ D(I2)<D(I1)
- gate size proportional to number of inputs:
 A(I1)<A(I2)
- Induced Tradeoff -- cannot always simultaneously minimize area and delay cost

Caltech CS184 Winter2005 -- DeHor

Delay in Gates make Sense?

- Consider a balanced tree of logic gates of depth (tree height) n.
- Does this have delay n?
 - (unit delay gates)
- How big is it? (unit gate area)
- How long a side?
- Minimum wire length from input to output?

Caltech CS184 Winter2005 -- DeHon

Delay in Gates make Sense?

- (continuing example)
- How big is it? (unit gate area) 2nd 2nd
- How long a side? $Sqrt(2^n)=2^{(n/2)}$
- Minimum wire length from input to output?
 - 2*2^(n/2)
- Delay per unit length? (speed of light limit)
 - Delay∞2(n/2)

Caltech CS184 Winter2005 -- DeHon

It's not all about costs...

- ...or maybe it is, just not always about a single, linear cost.
- Must manage complexity
 - Cost of developing/verifying design
 - Size of design can accomplish in fixed time
 (limited brainpower)
- Today: human brainpower is most often the bottleneck resource limiting what we can build.

Caltech CS184 Winter2005 -- DeHor

Review Logic Design

- Input specification as Boolean logic equations
- · Represent canonically
 - remove specification bias
- · Minimize logic
- · Cover minimizing target cost

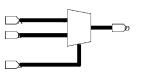
altech CS184 Winter2005 -- DeHor

If's

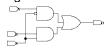
- If (a*b + /a*/b) c=d
- else

c=e

- t=a*b+/a*/b
- c=t*d + /t*e


If→Mux Conversion

- · Often convenient to think of IF's as Multiplexers
- If (a*b + /a*/b)c=d


Muxes

- Mux:
 - Selects one of two (several) inputs based on control bit

Mux Logic

- Of course, Mux is just logic:
 - mux out = /s*a + s*b

- · Two views logically equivalent
 - mux view more natural/abstract when inputs are multibit values (datapaths)

What about Tristates/busses?

- · Tristate logic:
 - output can be 1, 0, or undriven
 - can wire together so outputs can share a wire

· Is this anything different?

Tristates

- · Logically:
 - No, can model correct/logical operation of tristate bus with Boolean logic
 - Bus undriven (or multiply driven) is Don't-
 - no one should be depending on value
- Implementation:
 - sometimes an advantage in distributed

• don't have to build monolithic, central controller

Finite Automata

- Recall from CS21
- A DFA is a quintuple M={K,Σ,δ,s,F}
 - K is finite set of states
 - $-\Sigma$ is a finite alphabet
 - $-s \in K$ is the start state
 - F⊂K is the set of final states
 - $\,\delta$ is a transition function from K× $\!\Sigma$ to K

Finite Automata

- · Less formally:
 - Behavior depends not just on input
 - (as was the case for combinational logic)
 - Also depends on state
 - Can be completely different behavior in each state
 - Logic/output now depends on state and input

Caltech CS184 Winter2005 -- DeHor

Minor Amendment

- A DFA is a sextuple $M=\{K,\Sigma,\delta,s,F,\Sigma_o\}$
 - $\square \Sigma_0$ is a finite set of output symbols
 - $\square \delta$ is a transition function from $K \times \Sigma$ to $K \times \Sigma_0$

Caltech CS184 Winter2005 -- DeHo

What power does the DFA add?

altech CS184 Winter2005 -- DeHon

Power of DFA

- Process unbounded input with finite logic
- State is a finite representation of what's happened before
 - finite amount of stuff can remember to synopsize the past
- State allows behavior to depend on past (on context)

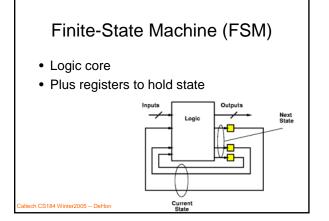
Caltech CS184 Winter2005 -- DeHon

Registers

- New element is a state element
- · Canonical instance is a register:
 - remembers the last value it was given until told to change
 - typically signaled by clock

I- QR

Caltech CS184 Winter2005 -- DeHo


Issues of Timing...

- ...many issues in detailed implementation
 - glitches and hazards in logic
 - timing discipline in clocking
 - ...
- We're going to work above that level for the most part this term.
- · Watch for these details in CS181

Same thing with registers

- · Logic becomes:
 - if (state=s1)
 - boolean logic for state 1
 - (including logic for calculate next state)
 - else if (state=s2)
 - boolean logic for state2
 - **–** ...
 - if (state=sn)
 - boolean logic for state n

Caltech CS184 Winter2005 -- DeHon

State Encoding

- States not (necessarily) externally visible
- We have *freedom* in how to encode them
 - assign bits to states
- Usually want to exploit freedom to minimize implementation costs
 - area, delay, energy
- (again, algorithms to attack -- cs137)

Caltech CS184 Winter2005 -- DeHon

Multiple, Interacting FSMs

 What do I get when I wire together more than one FSM?

Caltech CS184 Winter2005 -- DeHon

Multiple, Interacting FSMs

- What do I get when I wire together more than one FSM?
- · Resulting composite is also an FSM
 - Input set is union of input alphabets
 - State set is product of states:
 - e.g. for every sa_i in A.K and sb_j in B.K there will be a composite state (sa_i, sb_j) in AB.K
 - Think about concatenating state bits

Caltech CS184 Winter2005 -- DeHo

Multiple, Interacting FSMs

- In general, could get product number of states
 - $|AB.K| = |A|^*|B|$... can get large fast
- All composite states won't necessarily be reachable
 - so real state set may be < |A|*|B|

Multiple, Interacting FSMs

- Multiple, "independent" FSMs
 - often have implementation benefits
 - localize inputs need to see
 - · simplify logic
 - decompose/ease design
 - separate into small, understandable pieces
 - can sometimes obscure behavior
 - not clear what composite states are reachable

Caltach CC194 Winter200E DoUce

FSM Equivalence

- · Harder than Boolean logic
- Doesn't have unique canonical form
- Consider:
 - state encoding not change behavior
 - two "equivalent" FSMs may not even have the same number of states
 - can deal with infinite (unbounded) input
 - ...so cannot enumerate output in all cases

Caltech CS184 Winter2005 -- DeHo

FSM Equivalence

- · What matters is external observability
 - FA accepts and rejects same things
 - FSM outputs same signals in response to every possible input sequence
- · Possible?
 - Finite state suggests there is a finite amount of checking required to verify behavior

Caltech CS184 Winter2005 -- DeHor

FSM Equivalence Flavor

- · Given two FSMs A and B
 - consider the composite FSM AB
 - Inputs wired together
 - Outputs separate
- Ask
 - is it possible to get into a composite state in which A and B output different symbols?
- There is a literature on this

Caltech CS184 Winter2005 -- DeHon

FSM Specification

- St1: goto St2
- St2:
 - if (I==0) goto St3
 - else goto St4
- St3:
 - output o0=1
 - goto St1
- St4:
 - output o1=1

- goto St2 altech CS184 Winter2005 -- DeHo

- · Could be:
 - behavioral language
 - computer language
 - state-transition graph

Systematic FSM Design

- · Start with specification
- Can compute boolean logic for each state
 - If conversion...
 - including next state translation
 - Keep state symbolic (s1, s2...)
- Assign states
- Then have combinational logic
 - has current state as part of inputs
 - produces next state as part of outputs
- Design comb. Logic and add state registers

Admin: Reminder

- No class this Friday
- · Next class is Monday
 - Logic assignment due Monday

Caltoob CC194 Winter200E DoHor

Big Ideas [MSB Ideas]

- Can implement any Boolean function in gates
- Can implement any FA with gates and registers

Caltech CS184 Winter2005 -- DeHo

Big Ideas [MSB-1 Ideas]

- Canonical representation for combinational logic
- Transformation
 - don't have to implement the input literally
 - only have to achieve same semantics
 - trivial example: logic minimization
- There is a minimum delay, area
- Minimum depends on cost model