CS184a:
Computer Architecture
(Structure and Organization)

Day 19: February 23, 2005
Retime 1: Transformations

ch CS184 Winter2005 -- DeHon

Previously

» Reviewed Pipelining

— basic assignments on
» Saw spatial designs efficient

—when reuse logic at maximum frequency
« Interconnect is dominant delay

—and dominant area

—heavy call to reuse to use efficiently

Caltech CS184 Winter2005 -- DeHon

Today

» Systematic transformation for retiming
— preserve semantics (meaning)

Motivation

Caltech CS184 Winter2005 -- DeHon

Motivation

* FPGAs (spatial computing)

—run efficiently when all resources reused
rapidly . 5

« cycle time minimized

 “Everything in the right place at the right
time.”

Motivating Questions

« Can | build a fixed-frequency (fixed
clock) programmable architecture?

» Can | always make a design run at
maximum clock rate?

» How do we systematically transform any
computation to
— Operate on fixed-frequency array?

— Coordinate around mandatory registers in
design?

Interconnect Retiming

» Long Paths Slow

» Could limit cycle

» Add registers to long
distance interconnect
— At each switch?
— In the middle of long

wires?

» How justify these

registers?

Caltech CS184 Winter2005 -- DeHon

Day 3

Spatial Quadratic

A

Cc
B
« How do we pipeline a design?

Day 3

Pipelined Spatial Quadratic

9
7 clock
Multiply

11

Caltech CS184 Winter2!

Caltech CS184 Winter2005 -- DeHon 8
How do you use?
7 clock
Multiply
Itect 184 Winter2005 H 10
How do you use?
¢ To compute A*B+C*D+E
7 clock
Multiply
12

Caltech CS184 Winter2005 -- DeHon

Compute

* A*B+C*D+E

Caltech CS184 Winter2005 -- DeHon

m

7 clock
Multiply

How Compute?

* Y=Y, Xor X;
« With pipelined nand2 gates?

Caltech CS184 Winter2005 -- DeHon

want

have

15

Caltech CS184 Winter2005 -- De

[

16

|z

Retiming Algorithm

Caltech CS184 Winter2005 -- DeHon

17

Task

* Move registers to:
— Preserve semantics
— Minimize path length between registers

—i.e. Make path length 1 for maximum
throughput or reuse

— ...while minimizing number of registers
required

18

Caltech CS184 Winter2005 -- DeHon

Simple Example

Path Length (L) = 4

Can we do better?

19
Caltech CS184 Winter2005 -- DeHon

EADARAR=aNad

Canonical Graph
Representation

Lol alal”]

Observable /O

External /O

Separate arc for each path
Weight edges by number of registers
(weight nodes by delay through node)

21
CS184 Winter2005 -- DeHon

Retiming Lag/Lead

i0 ¢

Lag iO =l

—
Lead

Retiming: Assign a lag to every vertex

weight(e’) = weight(e) + lag(head(e))-lag(tail(e))

23
Caltech CS184 Winter2005 -- DeHon

Legal Register Moves

* Retiming Lag/Lead

Lag

LUT
L |

~—
Lead

20
Caltech CS184 Winter2005 -- DeHon

Critical Path Length

Hloalalalal

Observable I/O

External /O

Critical Path: Length of longest path of zero weight nodes
Compute in O(|E[) time by levelizing network:
o y"rgp‘(;JIQgi‘cal so‘rt‘A push path lengths forward until find reggster.

Valid Retiming

» Retiming is valid as long as:
— Ve in graph
« weight(e’) = weight(e) + lag(head(e))-lag(tail(e)) > 0
» Assuming original circuit was a valid
synchronous circuit, this guarantees:

— non-negative register weights on all edges
* no travel backward in time :-)

— all cycles have strictly positive register counts

— propagation delay on each vertex is non-negative
(assumed 1 for today)

Caltech CS184 Winter2005

24
- DeHon

Retiming Task

* Move registers = assign lags to nodes
— lags define all locally legal moves

« Preserving non-negative edge weights
— (previous slide)

— guarantees collection of lags remains
consistent globally

25

Caltech CS184 Winter2005 -- DeHon

Retiming Transformation

* N.B.: unchanged by retiming
— number of registers around a cycle
—delay along a cycle

» Cycle of length P must have
— at least P/c registers on it
—to be retimeable to cycle ¢

Optimal Retiming

» There is a retiming of
—graph G
—w/ clock cycle ¢

—iff G-1/c has no cycles with negative edge
weights

» G-a = subtract a from each edge weight

27

1/c Intuition

Want to place a register every c delay
units

» Each register adds one
« Each delay subtracts 1/c

» As long as remains more positives than
negatives around all cycles
— can move registers to accommodate
— Captures the regs=P/c constraints

G-1/c

Observable /O

4-1/g
=10 1/c—1/c

5-1/c

—-1/c -

29
Caltech CS184 Winter2005 -- DeHon

Compute Retiming

» Lag(v) = shortest path to I/O in G-1/c

« Compute shortest paths in O(|V||E|)
— Bellman-Ford

— also use to detect negative weight cycles
when ¢ too small

30
1 CS184 Winter2005 - DeHon

Caltecl

Bellman Ford

e Forl<OtoN
—u;<oo (except u;=0 for 10)
* Fork«OtoN
—fore;;eE
* umin(u; u+w(e;;)
* Fore;eE //still update 2negative cycle
o if u>urw(e;)
—cycles detected

31
CS184 Winter2005 -- DeHon

Try c=1

Observable /O

Apply to Example

Observable /O

W >l §atic §
=10 —1/c —1/c —1/c

5-1/c

32
Caltech CS184 Winter2005 -- DeHon

Apply: Find Lags

Observable /O

4
3
RIS
0
O=00+0
Negative weight cycles?
Shortest paths?
34
Itect 184 H

5-1/c
4-1/g
=10 —1/c —1/c —1/c
Observable 1/O
4
3
SO
NO=O=0=0
33
1 DeHon
Apply: Lags
Observable 11O
4
3
ok
N3
35
Caltech CS184 Winter2005 -- DeHon

Apply: Move Registers

Observable /O

oo

5

Observable I/O

bl

welght(e) = weight(e) + lag(head(e))-lag tall(e)g

Caltech CS184 Winter2005 -- DeHon

Apply: Retimed

Observable I/O

Apply: Retimed Design

5 Observable /0

e 5

Observable I/O

N5-deb HDGADG e 5
Revise Example o
(fanout delay) Revised: Graph

©
£
)
b1
18}

o
=
©
£
]
i3]
<
L

39

Revised: Graph Revised: C=17?

o]
=
«©
=
g
X
w

42
Caltech CS184 Winter2005 -- DeHon

Revised: C=2?

Revised: Lag

43

44

45

Revised: Apply Lag

46

Revised: Apply Lag

Revised: Retimed

Pipelining C>1 ==> Pipeline
* We can use this retiming to pipeline

» Assume we have enough (infinite
supply) registers at edge of circuit
» Retime them into circuit

Q
©
£
8
X
L

Add Registers

Pipeline Retiming: Lag

External /O

Pipelined Retimed Real Cycle

External I/O

53

54
Caltech CS184 Winter2005 -- DeHon

Real Cycle

External /0

Cycle C=27?

2-slow Cycle = C=1

59
84 Winter2005 - DeHon

Cycle C=17

56

2-Slow Lags

60
Winter2005 -- DeHon

10

2-Slow Retime

Caltech CS184 Winter2005 -- DeHon

Retimed 2-Slow Cycle

C-Slow applicable?

* Available parallelism
— solve C identical, independent problems
« Data-level parallelism
* e.g. process packets (blocks) separately
* e.g. independent regions in images
» Commutative operators
—e.g. max example

63

Caltech CS184 Winter2005 -- DeHon

62
Caltech CS184 Winter2005 -- DeHon
Max Example
2-Slow design:
X Y
X2X2X1X1 XOX0 —=Y27Y17?Y0D?

B2 A2 B1 A1 BO A0 —= YA2 YB1 YA1 YBO YAD ?

64

Caltech CS184 Winter2005 -- DeHon

Max Example

X #_v

Computes two Computes final
interleaved streams: max of even and
even max, odd max odd pairs

65
Caltech CS184 Winter2005 -- DeHon

HSRA Retiming

¢ HSRA
— adds mandatory
pipelining to
interconnect
» One additional twist
— long, pipelined
interconnect

« = need more than
one register on paths

Caltech CS184 Winter2005 -- DeHon

66

11

Accommodating HSRA
Interconnect Delays

» Add buffers to LUT—LUT path to match
interconnect register requirements

» Retime to C=1 as before

« Buffer chains force enough registers to
cover interconnect delays

67

Accommodating HSRA
Interconnect Delays

i

original ingert witer remave after remowve
connection butters L retime butiers | L reime buffers |
T
Ideal outcome: Alternate outcome:
typical of latest typical of earlier
armiving input to BLB. armiving inputs to BLB)
68
Caltech CS184 Winter2005 -- DeHon

Big Ideas
[MSB Ideas]

* Retiming transformations important to
— minimize cycles
— efficiently utilize spatial architectures
» Optimally solvable in O(|V||E|) time
* Tellsus
— pipelining required
— C-slow
—where to move registers

» Can accommodate mandatory delays
~altech CS184 Winter200E DeHon

12

