CS184a: Computer Architecture (Structure and Organization)

Day 13: February 4, 2005 Interconnect 1: Requirements

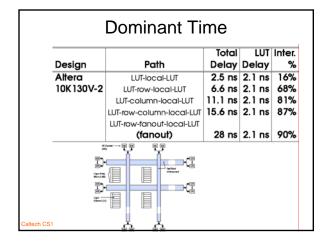
Caltech CS184 Winter2005 -- DeHon

Last Time

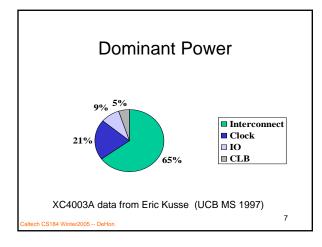
- · Saw various compute blocks
- To exploit structure in typical designs we need programmable interconnect
- All reasonable, scalable structures:
 - small to moderate sized logic blocks
 - connected via programmable interconnect
- been saying delay across programmable interconnect is a big factor

Caltech CS184 Winter2005 -- DeHon

2


Today

- Interconnect Design Space
- · Dominance of Interconnect
- · Interconnect Delay
- Simple things
 - and why they don't work


altech CS184 Winter2005 -- DeHor

3

$A_{bit_elm} = A_{fixed} + \underbrace{N_{SW}(N_p, w, p) \cdot A_{SW}}_{\text{Interconnect}} \\ + \underbrace{\left(\frac{c}{w}\right) \cdot n_{ibits} \cdot A_{mem_xell}}_{\text{Instruction}} \\ + \underbrace{\left(\frac{c}{w}\right)$

Dominant Time				
		Total		Inter.
Design	Path	Delay	Delay	
DPGA	LUT-LUT (in subarray)	3.5 ns	1.5 ns	60%
	LUT-xbar-LUT	7 ns	1.5 ns	80%
HSRA	LUT-LUT	8 ns	<2 ns	25%
	LUT-cascade	4 ns/4	<2 ns	0%
	LUT-4tree-LUT	8 ns	<2 ns	80%
	LUT-8tree-LUT	12 ns	<2 ns	83%
	LUT-16tree-LUT	16 ns	<2 ns	88%
	LUT-64tree-LUT	20 ns	<2 ns	90%

For Spatial Architectures

- · Interconnect dominant
 - area
 - power
 - time
- ...so need to understand in order to optimize architectures

Caltech CS184 Winter2005 -- DeHor

8

Interconnect

Problem

- Thousands of independent (bit) operators producing results
 - true of FPGAs today
 - ...true for *LIW, multi-uP, etc. in future
- Each taking as inputs the results of other (bit) processing elements
- Interconnect is late bound
 - don't know until after fabrication

Caltech CS184 Winter2005 -- DeHon

9

11

Design Issues

- Flexibility -- route "anything"
 - (w/in reason?)
- Area -- wires, switches
- Delay -- switches in path, stubs, wire length
- Power -- switch, wire capacitance
- Routability -- computational difficulty finding routes

Caltech CS184 Winter2005 -- DeHon

10

Delay

CS184 Winter2005 -- DeHon

Wiring Delay

• Delay on wire of length L_{seq}:

$$T_{seg} = T_{gate} + 0.4 RC$$

- $C = L_{seg} \times C_{sq}$
- $R = L_{seg} \times R_{sq}$

$$T_{\text{seq}} = T_{\text{gate}} + 0.4 C_{\text{sq}} \times R_{\text{sq}} \times L_{\text{seq}}^2$$

Caltech CS184 Winter2005 -- DeHon

Wire Numbers

- $R_{sq} = 0.17 \Omega/sq$.
 - from ITRS:Interconnect
 - · Conductor effective resistance
 - A/R (aspect ratio)
- $C_{sq} = 7 \times 10^{-18} F/sq$.
- $R_{sq} \times C_{sq} \approx 10^{-18} \, s$
- T_{gate} = 30 ps
- Chip: 7mm side, 70nm sq. (45nm process)
 - 105 squares across chip

Caltach CS184 Winter2005 -- DeHon

13

15

Wiring Delay

· Wire Delay

$$T_{\text{seg}} = T_{\text{gate}} + 0.4 C_{\text{sg}} \times R_{\text{sg}} \times L_{\text{seg}}^2$$

$$T_{\text{seg}} = 30 \text{ps} + 0.4 \ 10^{-18} \, \text{s} \times 10^{10}$$

$$T_{seq} = 30ps + 4ns \approx 4ns$$


Caltech CS184 Winter2005 -- DeHon

14

Buffer Wire

- Buffer every L_{seq}
- $T_{cross} = (L_{cross}/L_{seg}) T_{seg}$

$$\begin{split} T_{cross} &= \text{ } (L_{cross}/L_{seg}) \text{ } (T_{gate} + 0.4 \text{ } C_{sq} \times R_{sq} \times L_{seg}^2) \\ &= (L_{cross}) \text{ } (T_{gate}/L_{seg} + 0.4 \text{ } C_{sq} \times R_{sq} \times L_{seg}) \end{split}$$

Itech CS184 Winter2005 -- DeHor

Opt. Buffer Wire

- $T_{cross} = (L_{cross}) (T_{gate}/L_{seg} + 0.4 C_{sq} \times R_{sq} \times L_{seg})$
- Minimize:
 - Take $d(T_{cross})/d(L_{seq}) = 0$
 - $\bullet 0 = (L_{cross}) (-T_{gate}/L_{seq}^2 + 0.4 C_{sq} \times R_{sq})$
 - $T_{\text{gate}} = 0.4 \text{ C}_{\text{sq}} \times \text{R}_{\text{sq}} \text{L}_{\text{seq}}^2$

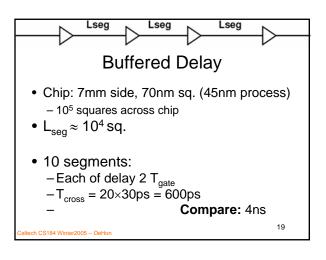
Caltech CS184 Winter2005 -- DeHon

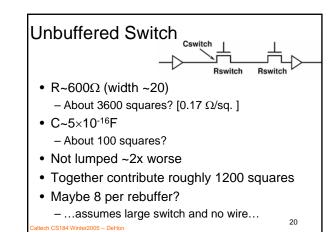
16

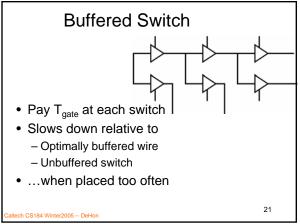
Optimization Point

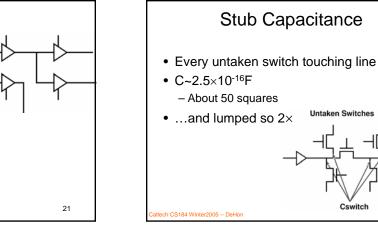
· Optimized:

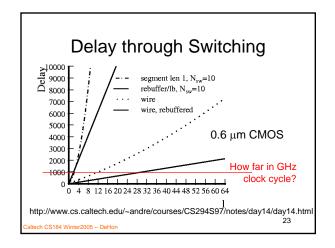
$$\begin{split} T_{cross} &= (L_{cross}/L_{seg}) \; (T_{gate} + 0.4 \; C_{sq} \times R_{sq} \times L_{seg}^2) \\ T_{gate} &= 0.4 \; C_{sq} \times R_{sq} \; L_{seg}^2 \end{split}$$

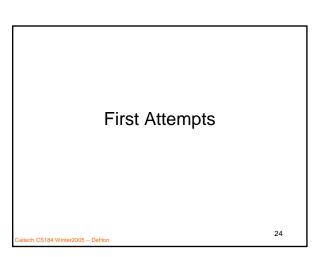

Says: equalize gate and wire delay

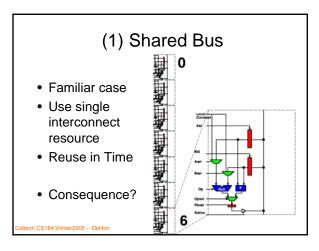



Optimal Segment Length


- $T_{\text{gate}} = 0.4 C_{\text{sg}} \times R_{\text{sg}} L_{\text{seg}}^2$
- $L_{seg} = Sqrt(T_{gate}/0.4 C_{sg} \times R_{sg})$
- $L_{seg} = Sqrt(30 \ 10^{-12} \ s/0.4 \ 10^{-18} \ s)$
- $L_{seg} \approx Sqrt(10^8) \approx 10^4 sq.$


Caltech CS184 Winter2005 -- DeHon





Shared Bus

- Consider operation: $y=Ax^2 +Bx +C$
 - -3 mpys
 - -2 adds
 - ~5 values need to be routed from producer to consumer
- Performance lower bound if have design w/:
 - m multipliers
 - u madd units
 - a adders
- i simultaneous interconnection busses

26

Resource Bounded Scheduling

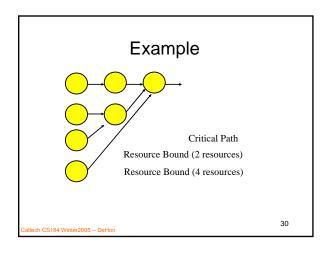
- · Scheduling in general NP-hard
 - (find optimum)
 - can approximate in O(E) time

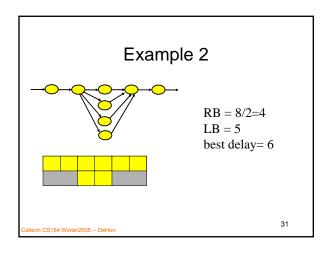
tech CS184 Winter2005 -- DeHon

27

Lower Bound: Critical Path

- ASAP schedule ignoring resource constraints
 - (look at length of remaining critical path)
- Certainly cannot finish any faster than that


Caltech CS184 Winter2005 -- DeHon


28

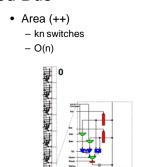
Lower Bound: Resource Capacity

- Sum up all capacity required per resource
- Divide by total resource (for type)
- Lower bound on remaining schedule time
 - (best can do is pack all use densely)

altech CS184 Winter2005 -- DeHor

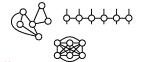
Shared Bus

- Consider operation: y=Ax² +Bx +C
 - 3 mpys
 - -2 adds
 - -~5 values need to be routed from producer to consumer
- Performance lower bound if have design w/:
 - m multipliers
 - u madd units
 - a adders
- i simultaneous interconnection busses

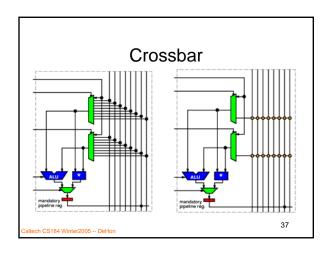

Viewpoint

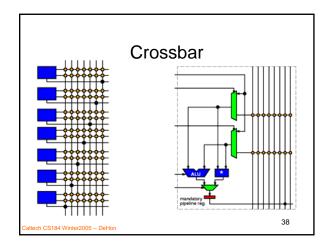
- Interconnect is a resource
- Bottleneck for design can be in availability of any resource
- Lower Bound on Delay: Logical Resource / Physical Resources
- May be worse
 - Dependencies (critical path bound)
 - ability to use resource

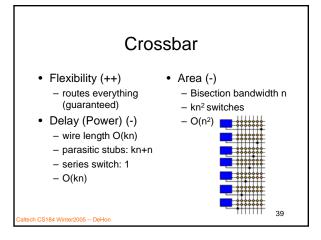
33

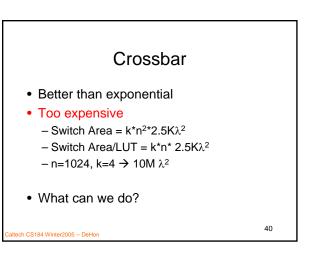

Shared Bus

- Flexibility (+)
 - routes everything (given enough time)
 - can be trick to schedule use optimally
- Delay (Power) (--)
 - wire length O(kn)
 - parasitic stubs: kn+n
 - series switch: 1
 - O(kn)
- sequentialize I/B

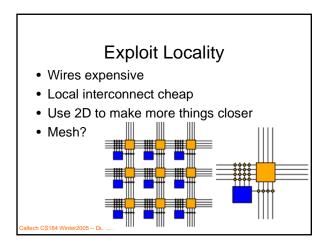

Term: Bisection Bandwidth

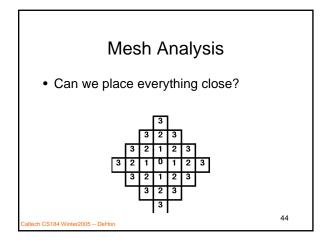

- · Partition design into two equal size
- Minimize wires (nets) with ends in both halves
- Number of wires crossing is bisection

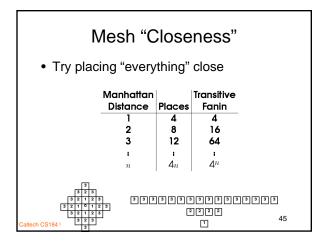


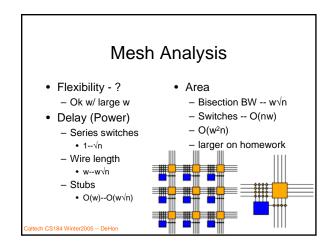

35

(2) Crossbar · Avoid bottleneck Every output gets its own interconnect channel


Avoiding Crossbar Costs


- Typical architecture trick:
 - exploit expected problem structure
- We have **freedom** in operator placement
- Designs have spatial locality
- →place connected components "close" together
 - don't need full interconnect?


Caltech CS184 Winter2005 -- DeHor


41

Exploit Locality • Wires expensive • Local interconnect cheap • 1D versions • What does this do to - Switches? - Delay? • (quantify on hmwrk)

Mesh

- Plausible
- ...but What's w
- ...and how does it grow?

Caltech CS184 Winter2005 -- DeHon

Big Ideas [MSB Ideas]

- Interconnect Dominant
 - power, delay, area
- Can be bottleneck for designs
- · Can't afford full crossbar
- Need to exploit locality
- · Can't have everything close

Caltech CS184 Winter2005 -- DeHon

47