

Previously

- Instruction Space Modeling
- huge range of densities
- huge range of efficiencies
- large architecture space
- modeling to understand design space
- Empirical Comparisons
- Ground cost of programmability

Caltech CS184 Winter2005 -- DeHon 2

Today

- Look at Programmable Compute Blocks
- Specifically LUTs Today
- Recurring theme:
- define parameterized space
- identify costs and benefits
- look at typical application requirements
- compose results, try to find best point

Compute Function

- What do we use for "compute" function

We could...

- Just build a large memory = large LUT
- Put our function in there
- What's wrong with that?

FPGA = Many small LUTs

Alternative to one big LUT

What's best to use?

- Small LUTs
- Large Memories
- ...small LUTs or large LUTs
- ...or, how big should our memory blocks used to peform computation be?

Start to Sort Out:

Big vs. Small Luts

- Establish equivalence
- how many small LUTs equal one big LUT?

How Much Logic in a LUT?

- Lower Bound?
- Concrete: 4-LUTs to implement M-LUT?
- Not use all inputs?
- 0 ... maybe 1
- Use all inputs?
- (M-1)/3
(M-1)/k for K-lut

example M-input AND -cover 4 ins w/ first 4-LUT, - 3 more and cascade input with each additional 13

How much logic in a LUT?

- Upper Upper Bound:
- M-LUT implemented w/ 4-LUTs
-M -LUT $\leq 2^{\mathrm{M}-4}+\left(2^{\mathrm{M}-4}-1\right) \leq 2^{\mathrm{M}-3} 4$-LUTs

How Much?

- Lower Upper Bound:
$-2^{2 \mathrm{M}}$ functions realizable by M-LUT
- Say Need n 4-LUTs to cover; compute n :
- strategy count functions realizable by each
- $\left(2^{2^{4}}\right)^{n} \geq 2^{2^{M}}$
- $n \log \left(2^{2^{4}}\right) \geq \log \left(2^{2^{M}}\right)$
- $n 2^{4} \log (2) \geq 2^{\mathrm{M}} \log (2)$
- $n 2^{4} \geq 2^{\mathrm{M}}$
- $n \geq 2^{\mathrm{M}-4}$

Memories and 4-LUTs

- For the most complex functions
- an M-LUT has ~2 ${ }^{\text {M-4 }} 4$-LUTs
\diamond SRAM 32Kx8 $\lambda=0.6 \mu \mathrm{~m}$
- 170M λ^{2} (21ns latency)
$-8^{*} 2^{11}=16 \mathrm{~K} 4$-LUTs
\diamond XC3042 $\lambda=0.6 \mu \mathrm{~m}$
$-180 M \lambda^{2}$ (13ns delay per CLB)
- 288 4-LUTs
- Memory is $50+x$ denser than FPGA
 17

How Much?

- Combine
- Lower Upper Bound
- Upper Lower Bound
- (number of 4-LUTs in M-LUT)

$$
2^{\mathrm{M}-4} \leq n \leq 2^{\mathrm{M}-3}
$$

Memory and 4-LUTs

- For "regular" functions?
\diamond 15-bit parity
- entire 32Kx8 SRAM
- 5 4-LUTs
- (2% of XC3042 ~ 3.2M $\lambda^{2} \sim 1 / 50$ th Memory)
$\diamond 7$ b Add
- entire 32 Kx 8 SRAM
- 14 4-LUTs
- (5\% of XC3042, $8.8 \mathrm{M} \lambda^{2} \sim 1 / 20$ th Memory)

Caltech CS184 Winter2005 -- DeHon
18

LUT + Interconnect

- Interconnect allows us to exploit structure in computation
- Already know
- LUT Area << Interconnect Areă ${ }^{\text {Action }}$
- Area of an M-LUT on FPGA >> M-LUT Area
- ...but most M-input functions
- complexity $\ll 2^{\text {M }}$

LUT Count vs. base LUT size

Toronto Experiments

- Want to determine best K for LUTs
- Bigger LUTs
- handle complicated functions efficiently
- less interconnect overhead
- Smaller LUTs
- handle regular functions efficiently
- interconnect allows exploitation of compute sturcture
- What's the typical complexity/structure?

Different Instance, Same Concept

- Most general functions are huge
- Applications exhibit structure
- Exploit structure to optimize "common" case

Caltech CS184 Winter2005 -- DeHon
20

LUT vs. K

- DES MCNC Benchmark
- moderately irregular

Familiar Systematization

- Define a design/optimization space
- pick key parameters
- e.g. $\mathrm{K}=$ number of LUT inputs
- Build a cost model
- Map designs
- Look at resource costs at each point
- Compose:
- Logical Resources \oplus Resource Cost
- Look for best design points
atech CS184 Winter2005 -- DeHon

Mapped LUT Area

- Compose Mapped LUTs and Area Model

Caltech CS184 Winter2005 -- DeHon
27

Toronto Result

- Minimum LUT Area
- at $K=4$
- Important to note minimum on previous slides based on particular cost model
- robust for different switch sizes
- (wire widths)
- [see graphs in paper]

Mapped Area vs. LUT K

N.B. unusual case minimum area at $\mathrm{K}=3$

Caltech CS184 Winter2005 -- DeHon
28

Caltech CS184 Winter2005 - Dethon
30

Implications

- Custom? / Gate Arrays?
- More restricted logic functions?

Caltech CS184 Winter2005 -- DeHon

Relate to Sequential?

- How does this result relate to sequential execution case?
- Number of LUTs = Number of Cycles
- Interconnect Cost?
- Naïve
- structure in practice?
- Instruction Cost?

Caltech CS184 Winter2005 -- DeHon

Delay?

- Circuit Depth in LUTs?
- "Simple Function" \rightarrow M-input AND

Some Math

- $Y=\log _{k}(2)$
- (M-k) $\log _{k}(2)$
- $k^{Y}=2$
- $(\mathrm{M}-\mathrm{k}) / \log _{2}(\mathrm{k})$
- $\mathrm{Y} \log _{2}(\mathrm{k})=1$
- $Y=1 / \log _{2}(k)$
- $\log _{k}(2)=1 / \log _{2}(k)$

Delay?

- M-input "Complex" function
- 1 table lookup for M-LUT
- between: $\left\lceil(\mathrm{M}-\mathrm{k}) / \log _{2}(\mathrm{k})\right\rceil+1$
- and $\left\lceil(M-k) / \log _{2}\left(k-\log _{2}(k)\right)\right\rceil+1$

Delay

- Simple: $\log \mathrm{M}$
- Complex: linear in M
- Both scale as $1 / \log (\mathrm{k})$

 Caltech CS184 Winter2005 -- DeHon

Observation

- General interconnect is expensive
- "Larger" logic blocks
\rightarrow less interconnect crossing
\rightarrow lower interconnect delay
\rightarrow get larger
\rightarrow get slower
- Happens faster than modeled here due to area
\rightarrow less area efficient
- don't match structure in computation

Caltech CS184 Winter2005 -- DeHon

Big Ideas
 [MSB-1 Ideas]

- Area
- LUT count decrease w/ K, but slower than exponential
- LUT size increase w/ K
- exponential LUT function
- empirically linear routing area
- Minimum area around $K=4$
- Programmable interconnect allows us to exploit that structure

Big Ideas
 [MSB-1 Ideas]

- Delay
- LUT depth decreases with K
- in practice closer to $\log (\mathrm{K})$
- Delay increases with K
- small K linear + large fixed term
- minimum around 5-6

