CS184a Winter 2005

California Institute of Technology
Department of Computer Science
Computer Architecture

CS184a, Winter 2005 Assignment 1: Logic Monday, January 3

Due: Monday, January 10, 9:00AM

You may do sections (A and B) or (B and C). C is primarily intended as a more challenging
(interesting) alternative for students who have already had considerable experience with
digital logic.

You may use hierarchial schematics. Where appropriate quantities are 4b, unsigned numbers.
Use of a schematic drawing program for circuits is encouraged.

A: Basic Logic

1. Implement A > B out of 2-input NAND gates.

2. Show the logic (in basic gates and registers) for a simple vending machine.

Inputs: n, d, and q, (nickle, dime, quarter)
Output: v (vend), nc (nickle change)
Function: Collect >30 cents, then vend and give change in nickles.

Don’t worry about running nout of nickles to provide as change.
Include a diagram of your state-transition graph in your writeup.
You may write equations instead of drawing gates; just make sure each operation is

decomposed into two input gates and each gate is clearly identified.

3. Using your comparison function from A.1, show logic for a spatial sorting function to
sort 4, 4b inputs into ascending order.

B: Properities of Boolean Functions

1. Consider all two-input functions. For each identify if the function is universal; you
may tie the inputs of a function to a constant 0 or 1.

2. Counting each gate as unit size, give a bound on the size difference between an optimal
implementation of an arbitrary n-input function when the implementation may use an
optimal mixture of the full set of 2-input functions from B.2 as gates compared to an
implementation which uses only 2-input NOR gates.



CS184a

Winter 2005

C: Advanced Logic Problems

1. Using only two-input NOR gates, give a bound on the number of different functions
that can be implemented with depth [. (Your bound should be non-trivial, but does
not need to be tight.)

2. Firing Squad — Design the logic for an FSmodule.

FSmodules can be assembled into a 1d array of arbitrary length.
Each FSmodule is connected exclusively to his left and right neighbors.
The leftmost FSmodule will get a start input.

FSmodules may have configuration input bits which distinguish the leftmost and
rightmost modules from the rest (i.e. a module will be leftmost, rightmost, or a
chained element).

All FSmodules are clocked together.
Data can travel from one FSmodule to his adjacent neighbor in one cycle.

You can have a constant number of wires between adjacent FSmodules (indepen-
dent of the length of the 1d array).

The state in an FSmodule is finite and independent of the length of the 1d array.

In response to an input pulse on the leftmost module, the array of FSmodules
should all, simultaneously flash an output light.

The number of cycles between the input pulse and the synchronized firing of the
FSmodules’ lights is not restricted.

Show your state-transition graph and gate logic (you may write equations for the logic
as long as the equations identify the primitive gates). Describe the operation of your
solution.



