CS184a:
 Computer Architecture (Structure and Organization)

Day 9: January 29, 2003

Compute 1: LUTs

Previously

- Instruction Space Modeling
- huge range of densities
- huge range of efficiencies
- large architecture space
- modeling to understand design space
- Empirical Comparisons
- Ground cost of programmability

Today

- Look at Programmable Compute Blocks
- Specifically LUTs Today
- Recurring theme:
- define parameterized space
- identify costs and benefits
- look at typical application requirements
- compose results, try to find best point

Compute Function

- What do we use for "compute" function

Lookup Table

- Load bits into table
-2^{N} bits to describe
$\rightarrow 2^{2^{N}}$ different functions
- Table translation
- performs logic transform

Lookup Table

We could...

- Just build a large memory = large LUT
- Put our function in there
- What's wrong with that?

FPGA = Many small LUTs

Alternative to one big LUT

What's best to use?

- Small LUTs
- Large Memories
- ...small LUTs or large LUTs
- ...or, how big should our memory blocks used to peform computation be?

Start to Sort Out: Big vs. Small Luts

- Establish equivalence
- how many small LUTs equal one big LUT?
"gates" in 2-LUT ?

How Much Logic in a LUT?

- Lower Bound?
- Concrete: 4-LUTs to implement M-LUT?
- Not use all inputs?
- 0 ... maybe 1
- Use all inputs?
- (M-1)/3
(M-1)/k for K-lut

example M -input AND - cover 4 ins w/ first 4-LUT, -3 more and cascade input with each additional

How much logic in a LUT?

- Upper Upper Bound:
- M-LUT implemented w/ 4-LUTs
-M -LUT $\leq 2^{\mathrm{M}-4}+\left(2^{\mathrm{M}-4}-1\right) \leq 2^{\mathrm{M}-3} 4$-LUTs

How Much?

- Lower Upper Bound:
$-2^{2^{\mathrm{M}}}$ functions realizable by M-LUT
- Say Need n 4-LUTs to cover; compute n :
- strategy count functions realizable by each
- $\left(2^{2^{4}}\right)^{n} \geq 2^{2^{\mathrm{M}}}$
- $\operatorname{nlog}\left(2^{2^{4}}\right) \geq \log \left(2^{2^{M}}\right)$
- $n 2^{4} \log (2) \geq 2^{\mathrm{M}} \log (2)$
- $n 2^{4} \geq 2^{\text {M }}$
- $n \geq 2^{\text {M-4 }}$

How Much?

- Combine
- Lower Upper Bound
- Upper Lower Bound
- (number of 4-LUTs in M-LUT)

$$
2^{\mathrm{M}-4} \leq n \leq 2^{\mathrm{M}-3}
$$

Memories and 4-LUTs

- For the most complex functions an MLUT has $\sim 2^{\text {M-4 }} 4$-LUTs
- SRAM 32Kx8 $\lambda=0.6 \mu \mathrm{~m}$
- 170M λ^{2} (21ns latency)
$-8^{*} 2^{11}=16 \mathrm{~K} 4$-LUTs
- XC3042 $\lambda=0.6 \mu \mathrm{~m}$
$-180 \mathrm{M} \lambda^{2}$ (13ns delay per CLB)
- 288 4-LUTs
- Memory is $50+x$ denser than FPGA
- ...and faster

Memory and 4-LUTs

- For "regular" functions?
- 15-bit parity
- entire 32Kx8 SRAM
- 5 4-LUTs
- (2\% of XC3042 ~ 3.2M $\lambda^{2} \sim 1 / 50$ th Memory $)$
- 7b Add
- entire 32Kx8 SRAM
- 14 4-LUTs
- (5\% of XC3042, 8.8M $\lambda^{2} \sim 1 / 20$ th Memory $)$

LUT + Interconnect

- Interconnect allows us to exploit structure in computation

Different Instance, Same Concept

- Most general functions are huge
- Applications exhibit structure
- Exploit structure to optimize "common" case

LUT Count vs. base LUT size

LUT vs. K

- DES MCNC Benchmark
- moderately irregular

Toronto Experiments

- Want to determine best K for LUTs
- Bigger LUTs
- handle complicated functions efficiently
- less interconnect overhead
- Smaller LUTs
- handle regular functions efficiently
- interconnect allows exploitation of compute sturcture
- What's the typical complexity/structure?

Familiar Systematization

- Define a design/optimization space
- pick key parameters
- e.g. K = number of LUT inputs
- Build a cost model
- Map designs
- Look at resource costs at each point
- Compose:
- Logical Resources \oplus Resource Cost
- Look for best design points

Toronto LUT Size

- Map to K-LUT
- use Chortle
- Route to determine wiring tracks
- global route
- different channel width W for each benchmark
- Area Model for K and W
- A $_{\text {lut }}$ exponential in K
- Interconnect area based on switch count.

Mapped LUT Area

- Compose Mapped LUTs and Area Model

Mapped Area vs. LUT K

Toronto Result

- Minimum LUT Area
- at $\mathrm{K}=4$
- Important to note minimum on previous slides based on particular cost model
- robust for different switch sizes
- (wire widths)
- [see graphs in paper]

Implications

Implications

- Custom? / Gate Arrays?
- More restricted logic functions?

Relate to Sequential?

- How does this result relate to sequential execution case?
- Number of LUTs = Number of Cycles
- Interconnect Cost?
- Naïve
- structure in practice?
- Instruction Cost?

Delay

Back to Spatial

Delay?

- Circuit Depth in LUTs?
- "Simple Function" \rightarrow M-input AND

Delay?

- M-input "Complex" function
- 1 table lookup for M-LUT
- Lower bound: $\left\lceil\log _{k}\left(2^{(M-k)}\right)\right\rceil+1$
$-\log _{k}\left(2^{(\mathrm{M}-\mathrm{k})}\right)=(\mathrm{M}-\mathrm{k}) \log _{\mathrm{k}}(2)$

Some Math

- $Y=\log _{k}(2)$
- $k^{Y}=2$
- $\mathrm{Y} \log _{2}(\mathrm{k})=1$
- $Y=1 / \log _{2}(k)$
- $\log _{\mathrm{k}}(2)=1 / \log _{2}(\mathrm{k})$
- (M-k) $\log _{k}(2)$
- $(M-k) / \log _{2}(k)$

Delay?

- M-input "Complex" function
- Lower bound: $\left\lceil\log _{k}\left(2^{(M-k)}\right)\right\rceil+1$
$-\log _{k}\left(2^{(M-k)}\right)=(\mathrm{M}-\mathrm{k}) \log _{k}(2)$
- Lower Bound: $\left\lceil(\mathrm{M}-\mathrm{k}) / \log _{2}(\mathrm{k})\right\rceil+1$

Delay?

- M-input "Complex" function
- Upper Bound:
- use each k-lut as a k - $\log _{2}(k)$ input mux - Upper Bound: $\left\lceil(\mathrm{M}-\mathrm{k}) / \log _{2}\left(\mathrm{k}-\log _{2}(\mathrm{k})\right)\right\rceil+1$

Delay?

- M-input "Complex" function
- 1 table lookup for M-LUT
- between: $\left\lceil(\mathrm{M}-\mathrm{k}) / \log _{2}(\mathrm{k})\right\rceil+1$
- and $\left\lceil(M-k) / \log _{2}\left(k-\log _{2}(k)\right)\right\rceil+1$

Delay

- Simple: $\log \mathrm{M}$
- Complex: linear in M
- Both scale as $1 / \log (k)$

Circuit Depth vs. K

LUT Delay vs. K

- For small LUTs:
$-\mathrm{t}_{\text {LUT }} \approx \mathrm{C}_{0}+\mathrm{C}_{1} \times \mathrm{K}$

- Large LUTs:
- add length term
$-\mathrm{c}_{2} \times \sqrt{ }{ }^{\mathrm{K}}{ }^{\mathrm{K}}$
- Plus Wire Delay
- ~Varea

Delay vs. K

Delay $=$ Depth $\times\left(\mathrm{t}_{\mathrm{LUT}}+\mathrm{t}_{\text {Interconnect }}\right)$

Observation

- General interconnect is expensive
- "Larger" logic blocks
- less interconnect crossing
\Rightarrow lower interconnect delay
\Rightarrow get larger
- get slower
- Happens faster than modeled here due to area
\Rightarrow less area efficient
- don't match structure in computation

Big Ideas [MSB Ideas]

- Memory most dense programmable structure for the most complex functions
- Memory inefficient (scales poorly) for structured compute tasks
- Most tasks have some structure
- Programmable interconnect allows us to exploit that structure

Big Ideas [MSB-1 Ideas]

- Area
- LUT count decrease w/ K, but slower than exponential
- LUT size increase w/ K
- exponential LUT function
- empirically linear routing area
- Minimum area around $K=4$

Big Ideas [MSB-1 Ideas]

- Delay
- LUT depth decreases with K
- in practice closer to $\log (\mathrm{K})$
- Delay increases with K
- small K linear + large fixed term
- minimum around 5-6

