CS184a:
 Computer Architecture (Structure and Organization)

Day 2: January 8, 2003
Logic and FSM Review

Last Time

- Computational Design as an Engineering Discipline
- Importance of Costs

Today

- Simple abstract computing building blocks
- gates, boolean logic
- registers, RTL
- Logic in Gates
- optimization
- properties
- costs
- Sequential Logic

Caltech CS184 Winter2003 -- DeHon

Reading Comment

- Web page indicates what's required/supplemental
- Handed out 3 things on Monday
- First two (From P\&H)
- Just if you want something to review/reference for boolean logic / arithmetic / FSMs
- Third (From W\&H)
- Suggested reading

Stateless Functions/Comb. Logic

- Compute some "function"

$$
-\mathrm{f}(\mathrm{i} 0, \mathrm{i} 1, \ldots \mathrm{in}) \rightarrow \mathrm{o0}, \mathrm{o1}, \ldots \mathrm{om}
$$

- Each unique input vector
- implies a particular, deterministic, output vector

Specification in Boolean logic

$-0=a+b$
$-\mathrm{o}=/(\mathrm{a} * \mathrm{~b})$
$-0=a * / b$
$-\mathrm{o}=\mathrm{a} / \mathrm{b}+\mathrm{b}$
$-o=a * b+b * c+d^{*} e+/ b * f+f^{*} / a+a b c d e f$
$-o=(a+b)(/ b+c)+/ b * / c$

Implementation in Gates

- Gate: small Boolean function
- Goal: assemble gates to cover our desired Boolean function
- Collection of gates should implement same function
- I.e. collection of gates and Boolean function should have same Truth Table

Covering with Gates

$$
-o=(a+/ b)(b+c)+/ b * / c
$$

Equivalence

- There is a canonical specification for a Boolean function
- it's Truth Table
- Two expressions, gate netlists, a gate netlist and an expression -- are the same iff.
- They have the same truth table

Truth Table

- $o=/ a^{*} / b^{*} c+/ a^{*} b^{*} / c+a * b^{*} / c+a^{*} / b * c$
a b co
0000
$\begin{array}{llll}0 & 0 & 1\end{array}$
0101
0110
1000
1011
1101
1110

How many Gates?

- o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c a b c o
0000
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
0101
0110
1000
1011
1101
1110
Caltech CS184 Winter2003 -- DeHon

How many gates?

$-o=(a+/ b)(b+c)+/ b * / c$
abco
0001
$\begin{array}{llll}0 & 0 & 1\end{array}$
0100
0110
1001
1011
1101

1111

Engineering Goal

- Minimize resources
- area, gates
- Exploit structure of logic
- "An Engineer can do for a dime what everyone else can do for a dollar."

Sum of Products

- o=/a*/b*c+/a*b*/c+a*b*/c+a*/b*c
- $o=(a+b)(/ b+/ c)$
$-a * b+a * / c+b * / c$
- $o=(a+/ b)(b+c)+/ b * / c$

$$
-a^{*} b+a * c+/ b * c+/ b * / c
$$

Minimum Sum of Products

- $o=a * / b * c+/ a * b * / c+a * b * / c+a * / b * c$

$$
/ b * c+b * / c
$$

Minimum Sum of Products

- $o=(a+b)(/ b+/ c)$
a*/b+a*/c+b*/c
a*/b+a*/c+b*/c

a*/b + b*/c

Redundant Terms

- $o=(a+b)(/ b+/ c)$
$-a^{*} / b+a^{*} / c+b^{*} / c$
$-a^{*} / b+b^{*} / c$ ab

There is a Minimum Area Implementation

$$
\text { - } \begin{aligned}
& o=(a+b)(/ b+/ c) \\
&-a^{*} / b+a^{*} / c+b^{*} / c \\
&-a^{*} / b+b^{*} / c
\end{aligned}
$$

There is a Minimum Area Implementation

- Consider all combinations of less gates:
- any smaller with same truth table?
- There must be a smallest one.

Not Always MSP

- $o=(a+b)(c+d)$
$-a * b+a * c+b * c+b * d$
3 2-input gates
7 2-input gates
- Product of Sums smaller...

Minimize Area

- Area minimizing solutions depends on the technology cost structure
- Consider:
$-11:\left((a * b)+\left(c^{*} d\right)\right)^{*} e^{*} f$
- I2: ((a*b*e*f)+(c*d*e*f))
- Area:
- I1: 2*A(and2)+1*A(or2)+1*A(and3)
- I2: 2*A(and4)+1*A(or2)

Minimize Area

- I1: ((a*b) + (c*d) $)^{*} e^{* f}$
- I2: ((a* $\left.\left.{ }^{*} e^{*} f\right)+\left(c^{*} d^{*} e^{* f}\right)\right)$
- Area:
- I1: 2* $\mathrm{A}($ and 2$)+1^{*} \mathrm{~A}($ or2 2$)+1^{*} \mathrm{~A}($ and 3$)$
- I2: 2*A(and4)+1*A(or2)
- all gates take unit area:
$\square A(12)=3<A(11)=4$
- gate size proportional to number of inputs:
- $A(11)=2^{*} 2+2+3=9<A(12)=2 * 4+2=10$

Best Solution Depends on Costs

- This is a simple instance of the general point
- ...When technology costs change, the optimal solution changes.
- In this case, we can develop an automated decision procedure which takes the costs as a parameter.

Don't Cares

- Sometimes will have incompletely specified functions:

a	b	c	o
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	x
1	0	0	x
1	0	1	0
1	1	0	0
	0		

Don't Cares

- Will want to pick don't care values to minimize implementation costs:

ab c o	a b c o
00001	00001
	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	0101
011 x	0111
100 x	1000
1010	1010
1100	1100
-1. 1 1-1 0	1110

NP-hard in General

- Logic Optimization
- Two Level Minimization
- Covering w/ reconvergent fanout
- Are NP-hard in general
- ...but that's not to say it's not viable to find an optimal solution.
- Cover how to attack in CS137
- can point you at rich literature
- can find software to do it for you

Delay in Gates

- Simple model:
- each gate contributes a fixed delay for passing through it
- can be different delay for each gate type
- e.g.
- inv $=50 \mathrm{ps}$
- nand2=100ps
- nand3=120ps
- and2=130ps

Path Delay

- Simple Model: Delay along path is the sum of the delays of the gates in the path

Critical Path

- Path lengths in circuit may differ
- Worst-case performance of circuit determined by the longest path
- Longest path designated Critical Path

Multiple Paths

Path Delay $=$ Delay $($ Or2i1 $)+$ Delay $($ And2 $)+$ Delay $($ Or2 $)$

Critical Path $=$ Longest

Path Delay $=3$

Path Delay $=2$

Critical Path

- There is always a set of critical paths
- set such that the path length of the members is at least as long as any other path length
- May be many such paths

Minimum Delay

- There is a minimum delay for a given function and technology cost.
- Like area:
- consider all circuits of delay $1,2, \ldots$.
- Work from 0 time (minimum gate delay) up
- stop when find a function which implements the desired logic function
- by construction no smaller delay implements function

Delay also depend on Costs

- Consider again:
- I1: ((a*b) + (c*d))***f
- 12: ((a*b*e*f)+(c*d*e*f))
- Delay:
- I1: D(and2)+D(or2)+D(and3)
- I2: D(and4)+D(or2)

Delay also depend on Costs

- Delay:
- I1: D(and2)+D(or2)+D(and3)
- I2: D(and4)+D(or2)
- $D(a n d 2)=130 p s, D(a n d 3)=150 p s, D(a n d 4)=170 p s$
$\square D(12)=(170+D($ or 2$))<D(11)=(130+150+D(o r 2))$
- $D(a n d 2)=90 p s, D(a n d 3)=100 \mathrm{ps}, \mathrm{D}(\mathrm{and} 4)=200 \mathrm{ps}$
$\square D(12)=(200+D(o r 2))>D(11)=(90+100+D($ or2 $))$

Delay and Area Optimum Differ

- I1: ((a*b) + (c*d) $)^{*} e^{* f}$
- l2: ((a*b*e*f)+(c*d*e*f))
- $D(a n d 2)=130 p s, D(a n d 3)=150 p s, D(a n d 4)=170 p s$ $\square D(12)<D(11)$
- gate size proportional to number of inputs:
\square A(I1)<A(I2)
- Induced Tradeoff -- cannot always simultaneously minimize area and delay cost

Delay in Gates make Sense?

- Consider a balanced tree of logic gates of depth (tree height) n.
- Does this have delay n ? (unit gate delay)
- How big is it? (unit gate area)
- How long a side?
- Minimum wire length from input to output?

Delay in Gates make Sense?

- (continuing example)
- How big is it? (unit gate area) 2^{n}
- How long a side? $\operatorname{Sqrt}\left(2^{n}\right)=2^{(n / 2)}$
- Minimum wire length from input to output?
$-2^{*} 2^{(n / 2)}$
- Delay per unit length? (speed of light limit)
- Delay $\propto 2^{(n / 2)}$

It's not all about costs...

- ...or maybe it is, just not always about a single, linear cost.
- Must manage complexity
- Cost of developing/verifying design
- Size of design can accomplish in fixed time
- (limited brainpower)
- Today: human brainpower is most often the bottleneck resource limiting what we can build.
Caltech CS184 Winter2003 -- DeHon

Review Logic Design

- Input specification as Boolean logic equations
- Represent canonically
- remove specification bias
- Minimize logic
- Cover minimizing target cost

If's

- If (a*b + /a*/b)
$-\mathrm{c}=\mathrm{d}$
- else
$-c=e$
- $t=a * b+/ a * / b$
- c=t*d + /t*e

If Mux Conversion

- Often convenient to think of IF's as Multiplexors
- If (a*b + /a*/b)
- c=d
- else
$-c=e$

Muxes

- Mux:
- Selects one of two (several) inputs based on control bi

Mux Logic

- Of course, Mux is just logic:
- mux out $=/ s^{*} a+s^{*} b$

- Two views logically equivalent
- mux view more natural/abstract when inputs are multibit values (datapaths)

What about Tristates/busses?

- Tristate logic:
- output can be 1,0 , or undriven
- can wire together so outputs can share a wire

- Is this anything different?

Tristates

- Logically:
- No, can model correct/logical operation of tristate bus with Boolean logic
- Bus undriven (or multiply driven) is Don'tCare case
- no one should be depending on value
- Implementation:
- sometimes an advantage in distributed control
- don't have to build monolithic, central controller

Finite Automata

- Recall from CS20
- A DFA is a quintuple $\mathrm{M}=\{\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{F}\}$
$-K$ is finite set of states
$-\Sigma$ is a finite alphabet
$-s \in K$ is the start state
$-F \subseteq K$ is the set of final states
$-\delta$ is a transition function from $K \times \Sigma$ to K

Finite Automata

- Less formally:
- Behavior depends not just on input - (as was the case for combinational logic)
- Also depends on state
- Can be completely different behavior in each state
- Logic/output now depends on state and input

Minor Amendment

- A DFA is a sextuple $M=\left\{K, \Sigma, \delta, s, F, \Sigma_{o}\right\}$
$\square \Sigma_{0}$ is a finite set of output symbols
$\square \delta$ is a transition function from $\mathrm{K} \times \Sigma$ to $\mathrm{K} \times \Sigma_{\text {。 }}$

What power does the DFA add?

Power of DFA

- Process unbounded input with finite logic
- State is a finite representation of what's happened before
- finite amount of stuff can remember to synopsize the past
- State allows behavior to depend on past (on context)

Registers

- New element is a state element
- Canonical instance is a register:
- remembers the last value it was given until told to change
- typically signaled by clock

Issues of Timing...

- ...many issues in detailed implementation
- glitches and hazards in logic
- timing discipline in clocking
- ...
- We're going to work above that level for the most part this term.
- Watch for these details in CS181

Same thing with registers

- Logic becomes:
- if (state=s1)
- boolean logic for state 1
- (including logic for calculate next state)
- else if (state=s2)
- boolean logic for state2
$-\ldots$
- if (state=sn)
- boolean logic for state n

Finite-State Machine (FSM)

- Logic core
- Plus registers to hold state

State Encoding

- States not (necessarily) externally visible
- We have freedom in how to encode them - assign bits to states
- Usually want to exploit freedom to minimize implementation costs
- area, delay, energy
- (again, algorithms to attack -- cs137)

Multiple, Interacting FSMs

- What do I get when I wire together more than one FSM?

Multiple, Interacting FSMs

- What do I get when I wire together more than one FSM?
- Resulting composite is also an FSM
- Input set is union of input alphabets
- State set is product of states:
- e.g. for every sa; in A.K and sb_{j} in B.K there will be a composite state $\left(\mathrm{sa}_{\mathrm{i}}, \mathrm{sb}_{\mathrm{j}}\right)$ in AB.K
- Think about concatenating state bits

Multiple, Interacting FSMs

- In general, could get product number of states
$-|A B . K|=|A|^{*}|B| \quad$... can get large fast
- All composite states won't necessarily be reachable
- so real state set may be $<|A|^{*}|B|$

Multiple, Interacting FSMs

- Multiple, "independent" FSMs
- often have implementation benefits
- localize inputs need to see
- simplify logic
- decompose/ease design
- separate into small, understandable pieces
- can sometimes obscure behavior
- not clear what composite states are reachable

FSM Equivalence

- Harder than Boolean logic
- Doesn't have unique canonical form
- Consider:
- state encoding not change behavior
- two "equivalent" FSMs may not even have the same number of states
- can deal with infinite (unbounded) input
- ...so cannot enumerate output in all cases

FSM Equivalence

- What matters is external observability
- FA accepts and rejects same things
- FSM outputs same signals in response to every possible input sequence
- Possible?
- Finite state suggests there is a finite amount of checking required to verify behavior

FSM Equivalence Flavor

- Given two FSMs A and B
- consider the composite FSM AB
- Inputs wired together
- Outputs separate
- Ask:
- is it possible to get into a composite state in which A and B output different symbols?
- There is a literature on this

FSM Specification

- St1: goto St2
- St2:
- if (l==0) goto St3
- else goto St4
- St3:
- output 00=1
- goto St1
- St4:
- output o1=1
- goto St2

[^0]- Could be:
- behavioral language
- computer language
- state-transition graph

Systematic FSM Design

- Start with specification
- Can compute boolean logic for each state
- If conversion...
- including next state translation
- Keep state symbolic (s1, s2...)
- Assign states
- Then have combinational logic
- has current state as part of inputs
- produces next state as part of outputs

Calto Design comb. Logic and add state registers

Admin: Reminder

- No class this Friday
- Next class is Monday

Big Ideas [MSB Ideas]

- Can implement any Boolean function in gates
- Can implement any FA with gates and registers

Big Ideas [MSB-1 Ideas]

- Canonical representation for combinational logic
- Transformation
- don't have to implement the input literally
- only have to achieve same semantics
- trivial example: logic minimization
- There is a minimum delay, area
- Minimum depends on cost model

[^0]: Caltech CS184 Winter2003 -- DeHon

