CS184c: Computer Architecture [Parallel and Multithreaded]

Day 8: April 26, 2001 Simultaneous Multi-Threading (SMT) Shared Memory Processing (SMP)

CALTECH cs184c Spring2001 -- DeHon

Note

- No class Tuesday
 - Time to work on project
 - [andre at FCCM]
- Class on Thursday

Today

- SMT
- Shared Memory
 - Programming Model
 - Architectural Model
 - Shared-Bus Implementation

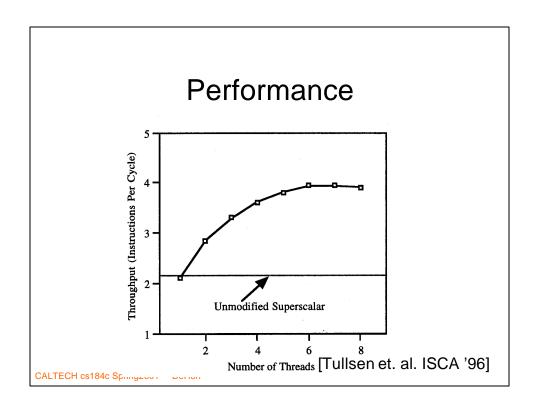
CALTECH cs184c Spring2001 -- DeHon

SMT

SMT uArch

- Observation: exploit register renaming
 - Get small modifications to existing superscalar architecture

SMT uArch


 N.B. remarkable thing is how similar superscalar core is

CALTECH cs184c Spring2001 -- DeHon

[Tullsen et. al. ISCA '96]

SMT uArch

- Changes:
 - Multiple PCs
 - Control to decide how to fetch from
 - Separate return stacks per thread
 - Per-thread reorder/commit/flush/trap
 - Thread id w/ BTB
 - Larger register file
 - More things outstanding

Optimizing: Fetch Alg.

- ICOUNT priority to thread w/ fewest pending instrs
- BRCOUNT
- MISSCOUNT
- IQPOSN penalize threads w/ old instrs (at front of queues)

[Tullsen et. al. ISCA '96]

CALTECH cs184c Spring2001 -- DeHon

Throughput Improvement

- 8-issue superscalar
 - Achieves little over 2 instructions per cycle
- Optimized SMT
 - Achieves 5.4 instructions per cycle on 8 threads
- 2.5x throughput increase

white the statement	THE				205	sts		
Fanctine	SMT, shows area in One Block	MIPS RIOK-2s in 0.18µ (mm²)	MIPS	S R10K-2x Relative area increase of adding SMT				
				Theresese of adding SMT to R10K-2x black	% increase versus corr area		% increase versus chip atea including L2 cache	
Desche	Desche	11.4	11.4	0		0.0	0.0	
karte	Dug	1.6	1.6	1				
Laine	leache	9.1	13.7	50		2.9	2.2	
TLB	Bag	1.3	1.9	1		756		
Fetch	TL8	4.4	5.7	30		0.7	0.6	
reich	Feech	1.0	4.6	157	5.6	4.1	3.1	
Deporte	Bjeed	3.6	7.2	13.50	1000	1000	- T	
	Docode	2.3	4.5	96	1.7	1.2	0.9	
Out-of-Order execution Register Files	Remip-Logic	2.5	3.3	68	19.4	(3.9	10.6	
	Remp-tables	2.4	16.2		20.0		1177	
	FreeLin	7.0	2.9					
	IQ.		8.8					
	1.50	9.4	11.8					
	FPQ Receder	6.3	8.0					
	RAS	6.1	7.8					
	letRF	5.7	2.1				-5420m/ja	
	FP-RF	5.3	18.8	231			10.9	
	Ind'U	7.6	7.6	0			5500	
Ueita	RPMUL.		4.0	9	D	0	0	
	FPALU	8.3	8.3					
Misselfancous	Father		5.2	D		D		
	ITAG	0.9	0.9				0	
	Misc.		2.4					[D
	00	13.7	13.7		/ 3/1			[Burns+Gaudi
Couring	Rosery	52.7	52.T	0	0			
56K L2 Cache		52.7	55	0	u .		0	1100 41001
Fotal	core	126.7	188.8		46.7		0	HPCA'99]
2000	Chip wio L2 cache		242.7			-		
	Chip se' L2 coche		197.7			37.1		

Not Done, yet...

- Conventional SMT formulation is for coarse-grained threads
- Combine SMT w/ TAM ?
 - Fill pipeline from multiple runnable threads in activation frame
 - ?multiple activation frames?
 - Eliminate thread switch overhead?

CALTECH cs184c Spring2001 -- DeHon

Thought?

SMT reduce need for split-phase operations?

Big Ideas

- Primitives
 - Parallel Assembly Language
 - Threads for control
 - Synchronization (post, full-empty)
- Latency Hiding
 - Threads, split-phase operation
- Exploit Locality
 - Create locality
 - · Scheduling quanta

CALTECH cs184c Spring2001 -- DeHon

Shared Memory

Shared Memory Model

- Same model as multithreaded uniprocessor
 - Single, shared, global address space
 - Multiple threads (PCs)
 - Run in same address space
 - Communicate through memory
 - Memory appear identical between threads
 - Hidden from users (looks like memory op)

CALTECH cs184c Spring2001 -- DeHon

That's All?

- For correctness have to worry about synchronization
 - Otherwise non-deterministic behavior
 - Recall threads run asynchronously
 - Without additional/synchronization discipline
 - Cannot say anything about relative timing
 - [Dataflow had a synchronization model]

Day 6

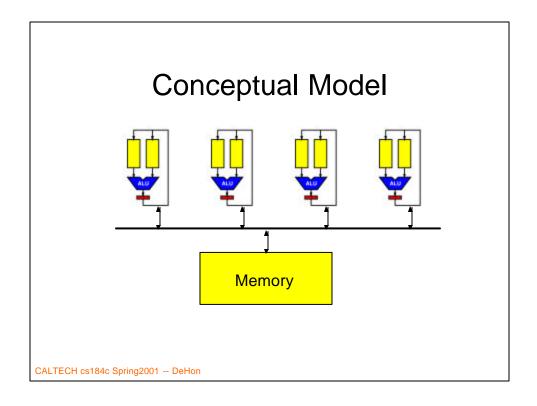
Future/Side-Effect hazard

- (define (decrement! a b)– (set! a (- a b)))
- (print (* (future (decrement! c d))
- (future (decrement! d 2))))

CALTECH cs184c Spring2001 -- DeHon

Multithreaded Synchronization

- (define (decrement! a b)
 - (set! a (- a b)))
- (print (* (future (decrement! c d))
- (future (decrement! d 2))))
- Problem
 - Ordering matters
 - No synchronization to guarantee ordering


Synchronization

- Already seen
 - Data presence (full/empty)
- Barrier
 - Everything before barrier completes before anything after barrier begins
- Locking
 - One thread takes exclusive ownership
- ...we'll have to talk more about synch.

CALTECH cs184c Spring2001 -- DeHon

Models

- Conceptual model:
 - Processor per thread
 - Single shared memory
- Programming Model:
 - Sequential language
 - Thread Package
 - Synchronization primitives
- Architecture Model: Multithreaded uniprocessor

Architecture Model Implications

- Coherent view of memory
 - Any processor reading at time X will see same value
 - All writes eventually effect memory
 - Until overwritten
 - Writes to memory seen in same order by all processors
- Sequentially Consistent Memory View

Sequential Consistency

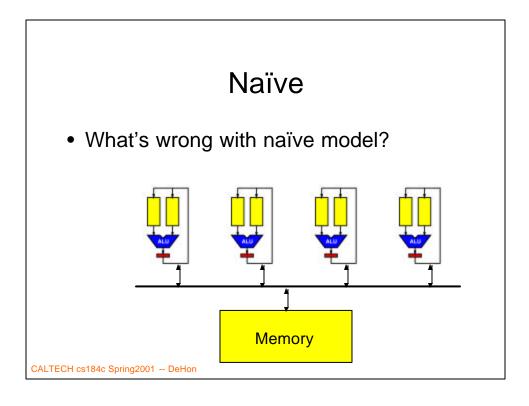
- P1: A = 0
- P2: B = 0

- •
- A = 1
- B = 1
- L1: if (B==0)
- L2: if (A==0)

Can both conditionals be true?

CALTECH cs184c Spring2001 -- DeHon

Coherence Alone


- Coherent view of memory
 - Any processor reading at time X will see same value
 - All writes eventually effect memory
 - Until overwritten
 - Writes to memory seen in same order by all processors
- Does not guarantee sequential consistency

Consistency

• ...there are less strict consistency models...

CALTECH cs184c Spring2001 -- DeHon

Implementation

What's Wrong?

- Memory bandwidth
 - 1 instruction reference per instruction
 - 0.3 memory references per instruction
 - 1ns cycle
 - N*1.3 Gwords/s?
- Interconnect
- Memory access latency

Optimizing

• How do we improve?

CALTECH cs184c Spring2001 -- DeHon

Naïve Caching

 What happens when add caches to processors?

Naïve Caching

- Cached answers may be stale
- Shadow the correct value

CALTECH cs184c Spring2001 -- DeHon

How have both?

- Keep caching
 - Reduces main memory bandwidth
 - Reduces access latency
- Satisfied Model

Cache Coherence

- Make sure everyone sees same values
- Avoid having stale values in caches
- At end of write, all cached values should be the same

CALTECH cs184c Spring2001 -- DeHon

Idea

- Make sure everyone sees the new value
- Broadcast new value to everyone who needs it
 - Use bus in shared-bus system

Effects

- Memory traffic is now just:
 - Cache misses
 - All writes

CALTECH cs184c Spring2001 -- DeHon

Additional Structure?

- Only necessary to write/broadcast a value if someone else has it cached
- Can write locally if know sole owner
 - Reduces main memory traffic
 - Reduces write latency

Idea

- Track usage in cache state
- "Snoop" on shared bus to detect changes in state

Cache State

- Data in cache can be in one of several states
 - Not cached (not present)
 - Exclusive
 - · Safe to write to
 - Shared
 - Must share writes with others
- Update state with each memory op

Cache States

- Extra bits in cache
 - Like valid, dirty

Big Ideas

- Simple Model
 - Preserve model
 - While optimizing implementation
- Exploit Locality
 - Reduce bandwidth and latency