CS184c:
Computer Architecture
[Parallel and Multithreaded]

Day 8: April 26, 2001
Simultaneous Multi-Threading (SMT)
Shared Memory Processing (SMP)

Note
* No class Tuesday
— Time to work on project

— [andre at FCCM]

» Class on Thursday




Today

« SMT
« Shared Memory
— Programming Model
— Architectural Model
— Shared-Bus Implementation

SMT




SMT Promise
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SMT uArch

» Observation: exploit register renaming

— Get small modifications to existing
superscalar architecture
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SMT uArch
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* N.B. remarkable thing is how similar
superscalar core is
[Tullsenet. al. ISCA "96]

SMT uArch

* Changes:
— Multiple PCs
— Control to decide how to fetch from
— Separate return stacks per thread
— Per-thread reorder/commit/flush/trap
—Thread id w/ BTB

— Larger register file
» More things outstanding




Performance

Throughput (Instructions Per Cycle)
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Optimizing: fetch freedom

* RR=Round Robin Ay

* RRX.Y . .
— X—threadsdofetch _ | @& weov ¢ ]
in cycle :
— Y —instructions £
fetched/thread g el

[Tullsen et. al. ISCA '96]
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Optimizing: Fetch Alg.

e ICOUNT - priority to
thread w/ fewest

pending instrs agl &
« BRCOUNT -
* MISSCOUNT [ §ns SSNEL S
* IQPOSN — penalize RS oo,
threads w/ old instrs HEW coovrzs |
(at front of queues) B orona

Mumber of Threads

[Tullsen et. al. ISCA "96]
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Throughput Improvement

» 8-issue superscalar
— Achieves little over 2 instructions per cycle
* Optimized SMT

— Achieves 5.4 instructions per cycle on 8
threads

» 2.5x throughput increase
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Costs
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Not Done, yet...

» Conventional SMT formulation is for
coarse-grained threads

e Combine SMT w/ TAM ?

— Fill pipeline from multiple runnable threads
in activation frame

— ?multiple activation frames?
— Eliminate thread switch overhead?

Thought?

* SMT reduce need for split-phase
operations?




Big Ideas

* Primitives

— Parallel Assembly Language

— Threads for control

— Synchronization (post, full-empty)
» Latency Hiding

— Threads, split-phase operation
» Exploit Locality

— Create locality
» Scheduling quanta

Shared Memory




Shared Memory Model

« Same model as multithreaded
uniprocessor
— Single, shared, global address space
— Multiple threads (PCs)
— Run in same address space

— Communicate through memory
* Memory appear identical between threads
 Hidden from users (looks like memory op)

That's All?

» For correctness have to worry about
synchronization
— Otherwise non-deterministic behavior
— Recall threads run asynchronously
— Without additional/synchronization
discipline
» Cannot say anything about relative timing
» [Dataflow had a synchronization model]
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Day 6
Future/Side-Effect hazard

» (define (decrement! a b)
— (set! a (- a b)))

* (print (* (future (decrement! c d))
. (future (decrement! d 2))))
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Multithreaded Synchronization

» (define (decrement! a b)
— (set! a (- a b)))
o (print (* (future (decrement! c d))
. (future (decrement! d 2))))
* Problem

— Ordering matters
— No synchronization to guarantee ordering
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Synchronization

Already seen
— Data presence (full/empty)
Barrier

— Everything before barrier completes before
anything after barrier begins

Locking
— One thread takes exclusive ownership

...we’'ll have to talk more about synch.

Models

 Conceptual model:
— Processor per thread
— Single shared memory

 Programming Model:
— Sequential language
— Thread Package
— Synchronization primitives
o Architecture Model: Multithreaded
uniprocessor
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Conceptual Model

Memory
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Architecture Model
Implications

» Coherent view of memory

— Any processor reading at time X will see
same value

— All writes eventually effect memory
 Until overwritten

— Writes to memory seen in same order by
all processors

» Sequentially Consistent Memory View
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Sequential Consistency

« P1: A=0 « P2 B=0
. A=1 . B=1
. L1 if (B==0) . L2: if (A==0)

Can both conditionals be true?

Coherence Alone

» Coherent view of memory

— Any processor reading at time X will see
same value

— All writes eventually effect memory
* Until overwritten
— Writes to memory seen in same order by
all processors
* Does not guarantee sequential
consistency
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Consistency

» ...there are less strict consistency
models...

Implementation
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Naive

« What's wrong with naive model?

Memory
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What's Wrong?

 Memory bandwidth
— 1 instruction reference per instruction
— 0.3 memory references per instruction
—1ns cycle
—N*1.3 Gwords/s ?

* Interconnect

« Memory access latency
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Optimizing

 How do we improve?
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Naive Caching

 What happens when add caches to

processors?
AL L L
1 1 1 1
v v 4 v v
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Nailve Caching

e Cached answers may be stale
« Shadow the correct value

How have both?

» Keep caching
— Reduces main memory bandwidth
— Reduces access latency

» Satisfied Model
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Cache Coherence

* Make sure everyone sees same values
« Avoid having stale values in caches

» At end of write, all cached values should
be the same

ldea

» Make sure everyone sees the new
value

* Broadcast new value to everyone who
needs it
— Use bus in shared-bus system
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Effects

* Memory traffic is now just:
— Cache misses
— All writes

Additional Structure?

» Only necessary to write/broadcast a
value if someone else has it cached
« Can write locally if know sole owner
— Reduces main memory traffic
— Reduces write latency
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|dea

» Track usage in cache state

 “Snoop” on shared bus to detect
changes in state

RD 0300... Someone

Has copy...

gk Bl S

Memory
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Cache State

 Data in cache can be in one of several
states
— Not cached (not present)

— Exclusive
» Safe to write to

— Shared
* Must share writes with others

» Update state with each memory op
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Cache Protocol

\
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[Culler/Singh/Gupta 5.13]
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Snoopy Cache Organization
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[Culler/Singh/Gupta 6.4]
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Cache States

» Extra bits in cache
— Like valid, dirty

-- DeHon

Misses

e waing #s are cache
line size

------

[Culler/Singh/Gupta 5.23]
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Misses
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Big Ideas

» Simple Model

— Preserve model

— While optimizing implementation
» Exploit Locality

— Reduce bandwidth and latency
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