CS184c:
Computer Architecture
[Parallel and Multithreaded]

Day 10: May 8, 2001
Synchronization
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Today

» Synchronization
— Primitives
— Algorithms
— Performance
— coarse vs. fine grained
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Problem

* If correctness requires an ordering
between threads,
— have to enforce it

* Was not a problem we had in the single-
thread case

— does occur in the multiple threads on
single processor case
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Desired Guarantees

* Precedence
— barrier synchronization
— producer-consumer

» Atomic Operation Set

e Mutual exclusion
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Read/Write Locks?

* Try implement lock with r/w:
while (~done)
if (~A.lock)

A.lock=true

do stuff

A.lock=false

done=true
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Problem with R/W locks?

» Consider context switch between test
(~A.lock=true?) and assignment
(A.lock=true)
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Primitive Need

* Indivisible primitive to enabled atomic
operations
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Original Examples

» Test-and-set

— combine test of A.lock and set into single
atomic operation

—once have lock
» can guarantee mutual exclusion at higher level

* Read-Modify-Write
— atomic read...write sequence
* Exchange
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Examples (cont.)

* Exchange
— Exchange true with A.lock
— if value retrieved was false
* this process got the lock
— if value retrieved was true
» already locked
* (didn’t change value)
* keep trying
— key is, only single exchanger get the false
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Implementing...

* What required to implement?
— Uniprocessor
— Bus-based
— Distributed
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Implement: Uniprocessor

* Prevent Interrupt/context switch

* Primitives use single address
— S0 page fault at beginning
— then ok, to computation (defer faults...)

e SMT?
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Implement: Snoop Bus

* Need to reserve for Write
— write-through
* hold the bus between read and write
— write-back

* need exclusive read
» and way to defer other writes until written
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Implement: Distributed

 Can't lock down bus

« Exchange at memory controller?
— Invalidate copies (force writeback)
— after settles, return value and write new
— don’t service writes until complete
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Performance Concerns?

Locking resources reduce parallelism
Bus (network) traffic
Processor utilization
Latency of operation
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Basic Synch. Components

« Acquisition
» Waiting
* Release
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Possible Problems

Spin wait generates considerable
memory traffic

Release traffic
Bottleneck on resources

Invalidation
—can’'t cache locally...

Fairness
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Test-and-Set

Try: t&s R1, A.lock » Simple algorithm

bnz R1, Try gene'rate _
return considerable traffic

* p contenders
— p try first, 1 wins
— for o(1) time p-1 spin
— ...then p-2...
— c*(p+p-1+p-2,,,)
- O(p?)
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Test-test-and-Set

Try: Id R1, A.lock * Read can be to local
bnz R1, Try cache
t&s R1, A.lock * Not generate bus
bnz R, Try traffic

» Generates less

return ) :
contention traffic
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Backoff

 Instead of immediately retrying
— wait some time before retry
— reduces contention

— may increase latency

* (what if I'm only contender and is about to be
released?)
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Primitive Bus Performance

20
F —— Test&set, c=0
18 |-—] —® Test&set, exponential backoff, ¢ = 3.64

—&—~ Test&set, exponential backoff, c = 0
—— Ideal

Time (ps)

Number of processors

[Culler/Singh/Gupta 5.29]
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Bad Effects

* Performance Decreases with users
— From growing traffic already noted
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Detecting atomicity sufficient

» Fine to detect if operation will appear
atomic

» Pair of instructions
— 1l -- load locked
* |load value and mark in cache as locked

— Sc -- store conditional
* stores value iff no intervening write to address
* e.g. cache-line never invalidated by write
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LL/SC operation

Try: LL R1 A.lock
BNZ R1, Try
SC R2, A.llock
BEQZ Try
return from lock
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LL/SC

Pair doesn’t really lock value

Just detects if result would appear that
way

Ok to have arbitrary interleaving
between LL and SC

Ok to have capacity eviction between
LL and SC

— will just fail and retry
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LL/SC and MP Traffic

Address can be cached

Spin on LL not generate global traffic
(everyone have their own copy)
After write (e.g. unlock)

— everyone miss -- O(p) message traffic

No need to lock down bus during
operation
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Ticket Synchronization

Separate counters for place in line and current
owner

Use ll/sc to implement fetch-and-increment on
position in line

Simple read current owner until own number
comes up

Increment current owner when done

Provides FIFO service (fairness)

O(p) reads on change like ll/sc

Chance to backoff based on expected wait time
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Array Based

Assign numbers like Ticket

But use numbers as address into an
array of synchronization bits

Each queued user spins on different
location

Set next location when done
Now only O(1) traffic per invalidation
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Performance Bus

—8— Array-based
—%— LL-SC
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[Culler/Singh/Gupta 5.30]
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Queuing

Like Array, but use queue

Atomicly splice own synchronization
variable at end of queue

Can allocate local to process

Spin until predecessor done
—and splices self out
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Performance Distributed
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[Culler/Singh/Gupta 8.34]
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Barrier Synchronization

» Guarantee all processes rendezvous at
point before continuing

» Separate phases of computation
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Simple Barrier

» Fetch-and-Decrement value
» Spin until reaches zero

* If reuse same synchronization variable
— will have to take care in reset
— one option: invert sense each barrier
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Simple Barrier Performance

» Bottleneck on synchronization variable

« O(p?) traffic spinning

« Each decrement invalidates cached
version
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Combining Trees

Avoid bottleneck by building tree
— fan-in and fan-out

Small (constant) number of nodes
rendezvous on a location

Last arriver synchronizes up to next level
Exploit disjoint paths in scalable network
Spin on local variables

» Predetermine who passes up
cacrecn e LOUERAMENt”
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Simple Bus Barrier

—8— Centralized
35 | ——~ Combining tree [~~~~~~~~~~~
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[Culler/Singh/Gupta 5.31]
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Coarse vs. Fine-Grained...

» Barriers are coarse-grained
synchronization
— all processes rendezvous at point

» Full-empty bits are fine-grained
— synchronize each consumer with producer
— expose more parallelism
— less false waiting

— many more synchronization events

* and variables
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Alewife / Full Empty

Experiment to see impact of

synchronization granularity
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Conjugate Gradient computation
Barriers vs. full-empty bits
[Yeung and Agarwal PPoPP’93]
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Alewife provides

* Ability to express fine-grained
synchronization with J-structures

 Efficient data storage (in directory)

» Hardware handling of data presence

— so like memory op in common case that
data is available
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Breakdown benefit

 How much of benefit from each?
— Expressiveness
— Memory efficiency
— Hardware support

CALTECH cs184c Spring2001 -- DeHon

20



Impact of Hardware Synch.
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Overall Contribution
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Synch. Granularity

 Big benefit from expression

 Hardware can make better
— but not the dominant effect
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Big Ideas

» Simple primitives
— Must have primitives to support atomic
operations
—don’t have to implement atomicly
* just detect non-atomicity
« Make fast case common
— optimize for locality
— minimize contention
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Big Ideas

» Avoid bottlenecks

— distribute load/work for scalable
performance
» what spin on for lock
» combining tree

» Expose parallelism
— fine-grain expressibility exposes most
— cost can be manageable
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