CS184c:
Computer Architecture
[Parallel and Multithreaded]

Day 10: May 8, 2001
Synchronization

CALTECH cs184c Spring2001 -- DeHon

Today

» Synchronization
— Primitives
— Algorithms
— Performance
— coarse vs. fine grained

CALTECH cs184c Spring2001 -- DeHon

Problem

* If correctness requires an ordering
between threads,
— have to enforce it

* Was not a problem we had in the single-
thread case

— does occur in the multiple threads on
single processor case

CALTECH cs184c Spring2001 -- DeHon

Desired Guarantees

* Precedence
— barrier synchronization
— producer-consumer

» Atomic Operation Set

e Mutual exclusion

CALTECH cs184c Spring2001 -- DeHon

Read/Write Locks?

* Try implement lock with r/w:
while (~done)
if (~A.lock)

A.lock=true

do stuff

A.lock=false

done=true

CALTECH cs184c Spring2001 -- DeHon

Problem with R/W locks?

» Consider context switch between test
(~A.lock=true?) and assignment
(A.lock=true)

CALTECH cs184c Spring2001 -- DeHon

Primitive Need

* Indivisible primitive to enabled atomic
operations

CALTECH cs184c Spring2001 -- DeHon

Original Examples

» Test-and-set

— combine test of A.lock and set into single
atomic operation

—once have lock
» can guarantee mutual exclusion at higher level

* Read-Modify-Write
— atomic read...write sequence
* Exchange

CALTECH cs184c Spring2001 -- DeHon

Examples (cont.)

* Exchange
— Exchange true with A.lock
— if value retrieved was false
* this process got the lock
— if value retrieved was true
» already locked
* (didn’t change value)
* keep trying
— key is, only single exchanger get the false
CALTECH CslBAC\éalwg&@)l -- DeHon

Implementing...

* What required to implement?
— Uniprocessor
— Bus-based
— Distributed

CALTECH cs184c Spring2001 -- DeHon

Implement: Uniprocessor

* Prevent Interrupt/context switch

* Primitives use single address
— S0 page fault at beginning
— then ok, to computation (defer faults...)

e SMT?

CALTECH cs184c Spring2001 -- DeHon

Implement: Snoop Bus

* Need to reserve for Write
— write-through
* hold the bus between read and write
— write-back

* need exclusive read
» and way to defer other writes until written

CALTECH cs184c Spring2001 -- DeHon

Implement: Distributed

 Can't lock down bus

« Exchange at memory controller?
— Invalidate copies (force writeback)
— after settles, return value and write new
— don’t service writes until complete

CALTECH cs184c Spring2001 -- DeHon

Performance Concerns?

Locking resources reduce parallelism
Bus (network) traffic
Processor utilization
Latency of operation

CALTECH cs184c Spring2001 -- DeHon

Basic Synch. Components

« Acquisition
» Waiting
* Release

CALTECH cs184c Spring2001 -- DeHon

Possible Problems

Spin wait generates considerable
memory traffic

Release traffic
Bottleneck on resources

Invalidation
—can’'t cache locally...

Fairness

CALTECH cs184c Spring2001 -- DeHon

Test-and-Set

Try: t&s R1, A.lock » Simple algorithm

bnz R1, Try gene'rate _
return considerable traffic

* p contenders
— p try first, 1 wins
— for o(1) time p-1 spin
— ...then p-2...
— c*(p+p-1+p-2,,,)
- O(p?)

CALTECH cs184c Spring2001 -- DeHon

Test-test-and-Set

Try: Id R1, A.lock * Read can be to local
bnz R1, Try cache
t&s R1, A.lock * Not generate bus
bnz R, Try traffic

» Generates less

return) :
contention traffic

CALTECH cs184c Spring2001 -- DeHon

Backoff

 Instead of immediately retrying
— wait some time before retry
— reduces contention

— may increase latency

* (what if I'm only contender and is about to be
released?)

CALTECH cs184c Spring2001 -- DeHon

Primitive Bus Performance

20
F —— Test&set, c=0
18 |-—] —® Test&set, exponential backoff, ¢ = 3.64

—&—~ Test&set, exponential backoff, c = 0
—— Ideal

Time (ps)

Number of processors

[Culler/Singh/Gupta 5.29]

CALTECH cs184c Spring2001 -- DeHon

10

Bad Effects

* Performance Decreases with users
— From growing traffic already noted

CALTECH cs184c Spring2001 -- DeHon

Detecting atomicity sufficient

» Fine to detect if operation will appear
atomic

» Pair of instructions
— 1l -- load locked
* |load value and mark in cache as locked

— Sc -- store conditional
* stores value iff no intervening write to address
* e.g. cache-line never invalidated by write

CALTECH cs184c Spring2001 -- DeHon

11

LL/SC operation

Try: LL R1 A.lock
BNZ R1, Try
SC R2, A.llock
BEQZ Try
return from lock

CALTECH cs184c Spring2001 -- DeHon

LL/SC

Pair doesn’t really lock value

Just detects if result would appear that
way

Ok to have arbitrary interleaving
between LL and SC

Ok to have capacity eviction between
LL and SC

— will just fail and retry

CALTECH cs184c Spring2001 -- DeHon

12

LL/SC and MP Traffic

Address can be cached

Spin on LL not generate global traffic
(everyone have their own copy)
After write (e.g. unlock)

— everyone miss -- O(p) message traffic

No need to lock down bus during
operation

CALTECH cs184c Spring2001 -- DeHon

Ticket Synchronization

Separate counters for place in line and current
owner

Use ll/sc to implement fetch-and-increment on
position in line

Simple read current owner until own number
comes up

Increment current owner when done

Provides FIFO service (fairness)

O(p) reads on change like ll/sc

Chance to backoff based on expected wait time

CALTECH cs184c Spring2001 -- DeHon

13

Array Based

Assign numbers like Ticket

But use numbers as address into an
array of synchronization bits

Each queued user spins on different
location

Set next location when done
Now only O(1) traffic per invalidation

CALTECH cs184c Spring2001 -- DeHon

Performance Bus

—8— Array-based
—%— LL-SC
~8—- LL-SC, exponential
—— Ticket
—4— Ticket, proportional
7
6
" 5
24 2 3
) [[
£ £
£ 3 = £
2
1 /
[} 0
1.3 5 7 9 11 1315
Number of processors Number of processors Number of processors
(@) Nuli (c=0, d=0) (b) Critical section (c = 3.64 ps, d = 0) () Delay (c = 3.64 ps, d = 1.29 ps)

[Culler/Singh/Gupta 5.30]

CALTECH cs184c Spring2001 -- DeHon

14

Queuing

Like Array, but use queue

Atomicly splice own synchronization
variable at end of queue

Can allocate local to process

Spin until predecessor done
—and splices self out

CALTECH cs184c Spring2001 -- DeHon

Performance Distributed

—8— Array-based

—8— Queuing

—&— Simple LL-SC

—%— Simple LL-SC, exponential
—— Ticket

—#— Ticket, proportional

~

o

Time (us)
Time (us)
»

N oW oA
T

||||||||||||||

1 3 5 7 9 11 13 15
Number of-processors Number of processors Number of processors

{a) Null (c=0,d =0) (b) Critical section {c = 3.64 ps, d = 0) {c) Delay (c = 3.64 ps, d = 1.29 ps)

13 5 7 9 11 13 15

[Culler/Singh/Gupta 8.34]

CALTECH cs184c Spring2001 -- DeHon

15

Barrier Synchronization

» Guarantee all processes rendezvous at
point before continuing

» Separate phases of computation

CALTECH cs184c Spring2001 -- DeHon

Simple Barrier

» Fetch-and-Decrement value
» Spin until reaches zero

* If reuse same synchronization variable
— will have to take care in reset
— one option: invert sense each barrier

CALTECH cs184c Spring2001 -- DeHon

16

Simple Barrier Performance

» Bottleneck on synchronization variable

« O(p?) traffic spinning

« Each decrement invalidates cached
version

CALTECH cs184c Spring2001 -- DeHon

Combining Trees

Avoid bottleneck by building tree
— fan-in and fan-out

Small (constant) number of nodes
rendezvous on a location

Last arriver synchronizes up to next level
Exploit disjoint paths in scalable network
Spin on local variables

» Predetermine who passes up
cacrecn e LOUERAMENt”

17

Simple Bus Barrier

—8— Centralized
35 | ——~ Combining tree [~~~~~~~~~~~
—a— Tournament
—B— Dissemination

30 -

1

20

Time (us)

15 b A T

10

Number of processors

[Culler/Singh/Gupta 5.31]

CALTECH cs184c Spring2001 -- DeHon

Coarse vs. Fine-Grained...

» Barriers are coarse-grained
synchronization
— all processes rendezvous at point

» Full-empty bits are fine-grained
— synchronize each consumer with producer
— expose more parallelism
— less false waiting

— many more synchronization events

* and variables
CALTECH cs184c Spring2001 -- DeHon

18

Alewife / Full Empty

Experiment to see impact of

synchronization granularity

CALTECH cs184c Spring2001 -- DeHon

Conjugate Gradient computation
Barriers vs. full-empty bits
[Yeung and Agarwal PPoPP’93]

0 4

Overall Impact

8 12 16

16.0 |

o
3J
B
o 140+ O---7ldeal
Q
7]

O—~0O Fine-Grain
1201 —_ Coarse-Grain

| | 00

CALTECH cs184c Spring2001 -- DeHon

8 12 16
Number of Processors

19

Alewife provides

* Ability to express fine-grained
synchronization with J-structures

 Efficient data storage (in directory)

» Hardware handling of data presence

— so like memory op in common case that
data is available

CALTECH cs184c Spring2001 -- DeHon

Breakdown benefit

 How much of benefit from each?
— Expressiveness
— Memory efficiency
— Hardware support

CALTECH cs184c Spring2001 -- DeHon

20

Impact of Hardware Synch.

g 2 4 & B 12 14 16w 2 5 2 4 B & 10 12 14 15 18 =
FTR i I G B = f JE F =1 1
2 248 28 o 28
g R
g 244 — _ 4 Processon -fid £ 24 4 — _ 4 Frocessors B
E — 18 Procésaors E — 16 Processais
= 24 ~fzo = 20 e
E § E
2 st - £ 16} = T
g 2 Sar
& 121 —t1.2 & 12t 5
- e Jun omi- B
0.4 - T T g
i [T S U (e L [FES ik] |
9 2 4 & & 1012 14 1§ 18 A o 2 4 6 & 10 12 14 16 1§ 2
Successiul JAEF Cost (eyclas) Suesessfl JREF Casl (eycles)
Sohver Operation Entire MICCG3D

CALTECH cs184c Spring2001 -- DeHon

au

a4

0.0

Impact of Compact Memory

[0]

E 241 124

'E 22 —22

2 201 —120

§ 18} 564K 4,051K 210K 136K | 1 g

g 1e} 116

° 14} t14

N

= 12} 112

€

5 101 110

Z o8t —tos
06} —os6
041 —fo4
02t —o0.2
0.0 0.0

HS1S2 HS1S2 HS1S2 HS182
4 Proc 4 Proc 16 Proc 16 Proc
16x16x16 32x32x32 16x16x16 32x32x32

CALTECH cs184c Spring2001 -- DeHon

21

Overall Contribution

[0

£
% 10} o - 110

%
Il expression only X 081 o8

[11 + memory ki °-67

2 o6t —tos

full-empty g

. = 0.46
IV + fast bit ops 2 L 041 Hos
0.21

02} 0.14 0437102

1 T 1w I T mwv
4 Proc 16 Proc
16x16x16 16x16x16

CALTECH cs184c Spring2001 -- DeHon

Synch. Granularity

 Big benefit from expression

 Hardware can make better
— but not the dominant effect

CALTECH cs184c Spring2001 -- DeHon

22

Big Ideas

» Simple primitives
— Must have primitives to support atomic
operations
—don’t have to implement atomicly
* just detect non-atomicity
« Make fast case common
— optimize for locality
— minimize contention

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

» Avoid bottlenecks

— distribute load/work for scalable
performance
» what spin on for lock
» combining tree

» Expose parallelism
— fine-grain expressibility exposes most
— cost can be manageable

CALTECH cs184c Spring2001 -- DeHon

23

