
1

CALTECH cs184c Spring2001 -- DeHon

CS184c:
Computer Architecture

[Parallel and Multithreaded]

Day 10: May 8, 2001
Synchronization

CALTECH cs184c Spring2001 -- DeHon

Today

• Synchronization
– Primitives
– Algorithms
– Performance
– coarse vs. fine grained

2

CALTECH cs184c Spring2001 -- DeHon

Problem

• If correctness requires an ordering
between threads,
– have to enforce it

• Was not a problem we had in the single-
thread case
– does occur in the multiple threads on

single processor case

CALTECH cs184c Spring2001 -- DeHon

Desired Guarantees

• Precedence
– barrier synchronization
– producer-consumer

• Atomic Operation Set
• Mutual exclusion

3

CALTECH cs184c Spring2001 -- DeHon

Read/Write Locks?

• Try implement lock with r/w:
while (~done)
if (~A.lock)
 A.lock=true
 do stuff
 A.lock=false
 done=true

CALTECH cs184c Spring2001 -- DeHon

Problem with R/W locks?

• Consider context switch between test
(~A.lock=true?) and assignment
(A.lock=true)

4

CALTECH cs184c Spring2001 -- DeHon

Primitive Need

• Indivisible primitive to enabled atomic
operations

CALTECH cs184c Spring2001 -- DeHon

Original Examples

• Test-and-set
– combine test of A.lock and set into single

atomic operation
– once have lock

• can guarantee mutual exclusion at higher level

• Read-Modify-Write
– atomic read…write sequence

• Exchange

5

CALTECH cs184c Spring2001 -- DeHon

Examples (cont.)

• Exchange
– Exchange true with A.lock
– if value retrieved was false

• this process got the lock

– if value retrieved was true
• already locked
• (didn’t change value)
• keep trying

– key is, only single exchanger get the false
value

CALTECH cs184c Spring2001 -- DeHon

Implementing...

• What required to implement?
– Uniprocessor
– Bus-based
– Distributed

6

CALTECH cs184c Spring2001 -- DeHon

Implement: Uniprocessor

• Prevent Interrupt/context switch
• Primitives use single address

– so page fault at beginning
– then ok, to computation (defer faults…)

• SMT?

CALTECH cs184c Spring2001 -- DeHon

Implement: Snoop Bus

• Need to reserve for Write
– write-through

• hold the bus between read and write

– write-back
• need exclusive read
• and way to defer other writes until written

7

CALTECH cs184c Spring2001 -- DeHon

Implement: Distributed

• Can’t lock down bus
• Exchange at memory controller?

– Invalidate copies (force writeback)
– after settles, return value and write new
– don’t service writes until complete

CALTECH cs184c Spring2001 -- DeHon

Performance Concerns?

• Locking resources reduce parallelism
• Bus (network) traffic
• Processor utilization
• Latency of operation

8

CALTECH cs184c Spring2001 -- DeHon

Basic Synch. Components

• Acquisition
• Waiting
• Release

CALTECH cs184c Spring2001 -- DeHon

Possible Problems

• Spin wait generates considerable
memory traffic

• Release traffic
• Bottleneck on resources
• Invalidation

– can’t cache locally…

• Fairness

9

CALTECH cs184c Spring2001 -- DeHon

Test-and-Set

Try: t&s R1, A.lock
 bnz R1, Try
 return

• Simple algorithm
generate
considerable traffic

• p contenders
– p try first, 1 wins
– for o(1) time p-1 spin
– …then p-2…
– c*(p+p-1+p-2,,,)
– O(p2)

CALTECH cs184c Spring2001 -- DeHon

Test-test-and-Set

Try: ld R1, A.lock
 bnz R1, Try
 t&s R1, A.lock
 bnz R1, Try
 return

• Read can be to local
cache

• Not generate bus
traffic

• Generates less
contention traffic

10

CALTECH cs184c Spring2001 -- DeHon

Backoff

• Instead of immediately retrying
– wait some time before retry
– reduces contention
– may increase latency

• (what if I’m only contender and is about to be
released?)

CALTECH cs184c Spring2001 -- DeHon

Primitive Bus Performance

[Culler/Singh/Gupta 5.29]

11

CALTECH cs184c Spring2001 -- DeHon

Bad Effects

• Performance Decreases with users
– From growing traffic already noted

CALTECH cs184c Spring2001 -- DeHon

Detecting atomicity sufficient

• Fine to detect if operation will appear
atomic

• Pair of instructions
– ll -- load locked

• load value and mark in cache as locked

– sc -- store conditional
• stores value iff no intervening write to address
• e.g. cache-line never invalidated by write

12

CALTECH cs184c Spring2001 -- DeHon

LL/SC operation

Try: LL R1 A.lock
 BNZ R1, Try
 SC R2, A.lock
 BEQZ Try
 return from lock

CALTECH cs184c Spring2001 -- DeHon

LL/SC

• Pair doesn’t really lock value
• Just detects if result would appear that

way
• Ok to have arbitrary interleaving

between LL and SC
• Ok to have capacity eviction between

LL and SC
– will just fail and retry

13

CALTECH cs184c Spring2001 -- DeHon

LL/SC and MP Traffic

• Address can be cached
• Spin on LL not generate global traffic

(everyone have their own copy)
• After write (e.g. unlock)

– everyone miss -- O(p) message traffic

• No need to lock down bus during
operation

CALTECH cs184c Spring2001 -- DeHon

Ticket Synchronization

• Separate counters for place in line and current
owner

• Use ll/sc to implement fetch-and-increment on
position in line

• Simple read current owner until own number
comes up

• Increment current owner when done
• Provides FIFO service (fairness)
• O(p) reads on change like ll/sc
• Chance to backoff based on expected wait time

14

CALTECH cs184c Spring2001 -- DeHon

Array Based

• Assign numbers like Ticket
• But use numbers as address into an

array of synchronization bits
• Each queued user spins on different

location
• Set next location when done
• Now only O(1) traffic per invalidation

CALTECH cs184c Spring2001 -- DeHon

Performance Bus

[Culler/Singh/Gupta 5.30]

15

CALTECH cs184c Spring2001 -- DeHon

Queuing

• Like Array, but use queue
• Atomicly splice own synchronization

variable at end of queue
• Can allocate local to process
• Spin until predecessor done

– and splices self out

CALTECH cs184c Spring2001 -- DeHon

Performance Distributed

[Culler/Singh/Gupta 8.34]

16

CALTECH cs184c Spring2001 -- DeHon

Barrier Synchronization

• Guarantee all processes rendezvous at
point before continuing

• Separate phases of computation

CALTECH cs184c Spring2001 -- DeHon

Simple Barrier

• Fetch-and-Decrement value
• Spin until reaches zero
• If reuse same synchronization variable

– will have to take care in reset
– one option: invert sense each barrier

17

CALTECH cs184c Spring2001 -- DeHon

Simple Barrier Performance

• Bottleneck on synchronization variable
• O(p2) traffic spinning
• Each decrement invalidates cached

version

CALTECH cs184c Spring2001 -- DeHon

Combining Trees

• Avoid bottleneck by building tree
– fan-in and fan-out

• Small (constant) number of nodes
rendezvous on a location

• Last arriver synchronizes up to next level
• Exploit disjoint paths in scalable network
• Spin on local variables
• Predetermine who passes up

– “Tournament”

18

CALTECH cs184c Spring2001 -- DeHon

Simple Bus Barrier

[Culler/Singh/Gupta 5.31]

CALTECH cs184c Spring2001 -- DeHon

Coarse vs. Fine-Grained...

• Barriers are coarse-grained
synchronization
– all processes rendezvous at point

• Full-empty bits are fine-grained
– synchronize each consumer with producer
– expose more parallelism
– less false waiting
– many more synchronization events

• and variables

19

CALTECH cs184c Spring2001 -- DeHon

Alewife / Full Empty

• Experiment to see impact of
synchronization granularity

• Conjugate Gradient computation
• Barriers vs. full-empty bits
• [Yeung and Agarwal PPoPP’93]

CALTECH cs184c Spring2001 -- DeHon

Overall Impact

20

CALTECH cs184c Spring2001 -- DeHon

Alewife provides

• Ability to express fine-grained
synchronization with J-structures

• Efficient data storage (in directory)
• Hardware handling of data presence

– so like memory op in common case that
data is available

CALTECH cs184c Spring2001 -- DeHon

Breakdown benefit

• How much of benefit from each?
– Expressiveness
– Memory efficiency
– Hardware support

21

CALTECH cs184c Spring2001 -- DeHon

Impact of Hardware Synch.

CALTECH cs184c Spring2001 -- DeHon

Impact of Compact Memory

22

CALTECH cs184c Spring2001 -- DeHon

Overall Contribution

II expression only
III + memory
 full-empty
IV + fast bit ops

CALTECH cs184c Spring2001 -- DeHon

Synch. Granularity

• Big benefit from expression
• Hardware can make better

– but not the dominant effect

23

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• Simple primitives
– Must have primitives to support atomic

operations
– don’t have to implement atomicly

• just detect non-atomicity

• Make fast case common
– optimize for locality
– minimize contention

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• Avoid bottlenecks
– distribute load/work for scalable

performance
• what spin on for lock
• combining tree

• Expose parallelism
– fine-grain expressibility exposes most
– cost can be manageable

