CS184a:
 Computer Architecture (Structures and Organization)

Day2: September 27, 2000
Logic, Gate, FSMs

Last Time

- Matter Computes
- Computational Design as an Engineering Discipline
- Importance of Costs

Today

- Simple abstract computing building blocks
- gates, boolean logic
- registers, RTL
- Logic in Gates
- optimization
- properties
- costs
- Sequential Logic

Today

- Most of you can benefit from the review
- This is stuff you should know solidly
- This is not a lecture which could have been given in EE4
- ... and I'll point out some facts/features which you might not have noticed in your basic digital logic course...

Stateless Functions/Comb. Logic

- Compute some "function"
$-\mathrm{f}(\mathrm{i} 0, \mathrm{i} 1, \ldots \mathrm{in}) \rightarrow \mathrm{o} 0, \mathrm{o} 1, \ldots \mathrm{om}$
- Each unique input vector
- implies a particular, deterministic, output vector

$$
\begin{aligned}
& \text { Specification in Boolean logic } \\
& -\mathrm{o}=\mathrm{a}+\mathrm{b} \\
& -\mathrm{o}=/\left(a^{*} \mathrm{~b}\right) \\
& -\mathrm{o}=a^{*} / \mathrm{b} \\
& -\mathrm{o}=\mathrm{a}^{*} / \mathrm{b}+\mathrm{b} \\
& -\mathrm{o}=\mathrm{a}^{*} \mathrm{~b}+\mathrm{b}^{*} \mathrm{c}+\mathrm{d}^{*} \mathrm{e}+/ \mathrm{b}^{*} \mathrm{f}+\mathrm{f}^{*} / \mathrm{a}+\mathrm{abcdef} \\
& -\mathrm{o}=(\mathrm{a}+\mathrm{b})(/ \mathrm{b}+\mathrm{c})+/ b^{* / c}
\end{aligned}
$$

Implementation in Gates

- Gate: small Boolean function
- Goal: assemble gates to cover our desired Boolean function
- Collection of gates should implement same function
- I.e. collection of gates and Boolean function should have same Truth Table

Covering with Gates

$-\mathrm{o}=(\mathrm{a}+/ \mathrm{b})(\mathrm{b}+\mathrm{c})+/ \mathrm{b}^{*} / \mathrm{c}$

Covering with Gates

$-\mathrm{O}=/ \mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}+/ \mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}$

Equivalence

- There is a canonical specification for a Boolean function
- it's Truth Table
- Two expressions, gate netlists, a gate netlist and an expression -- are the same iff.
- They have the same truth table

Truth Table

- $\mathrm{o}=/ \mathrm{a} * / \mathrm{b}^{*} \mathrm{c}+/ \mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}$
a b c o
0000
$\begin{array}{llll}0 & 0 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$
$011 \quad 0$
1000
1011
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$
1110

How many Gates?

- $o=/ a^{*} / b^{*} c+/ a^{*} b^{*} / c+a^{*} b^{*} / c+a^{*} / b^{*} c$
a b c o
0000
0011
0101
0110
1000
1011
$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$
1110

How many gates?

$-\mathrm{o}=(\mathrm{a}+/ \mathrm{b})(\mathrm{b}+\mathrm{c})+/ \mathrm{b}^{*} / \mathrm{c}$

Engineering Goal

- Minimize resources
- area, gates
- Exploit structure of logic
- "An Engineer can do for a dime what everyone else can do for a dollar."

Sum of Products

- $\mathrm{o}=/ \mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}+/ \mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} \mathrm{~b} * / \mathrm{c}+\mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}$
- $\mathrm{o}=(\mathrm{a}+\mathrm{b})(/ \mathrm{b}+/ \mathrm{c})$
$-a^{*} b+a * / c+b^{*} / c$
- $\mathrm{o}=(\mathrm{a}+/ \mathrm{b})(\mathrm{b}+\mathrm{c})+/ \mathrm{b}^{*} / \mathrm{c}$
$-a * b+a * c+/ b^{*} c+/ b^{*} / c$

Minimum Sum of Products

- $\mathrm{o}=/ \mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}+/ \mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} \mathrm{~b}^{*} / \mathrm{c}+\mathrm{a}^{*} / \mathrm{b}^{*} \mathrm{c}$
$-/ b^{*} c+b^{*} / c$
ab
- $\mathrm{o}=(\mathrm{a}+\mathrm{b})(/ \mathrm{b}+/ \mathrm{c})$
$-a^{*} / b+a^{*} / c+b^{*} / c$

00							0	0	11	10

$-a^{*} / b+b^{*} / c$

- $\mathrm{o}=(\mathrm{a}+/ \mathrm{b})(\mathrm{b}+\mathrm{c})+/ \mathrm{b}$ */c
$-a * b+a * c+/ b * c+/ b * / c$
$-/ b+a * b$

\[

\]

Redundant Terms

- $o=/ a * / b * c+/ a * b * / c+a * b * / c+a * / b * c$ $-/ b^{*} c+b^{*} / c$
- $\mathrm{o}=(\mathrm{a}+\mathrm{b})(/ \mathrm{b}+/ \mathrm{c})$

$-a^{*} / b+b^{*} / c$
- $\mathrm{o}=(\mathrm{a}+/ \mathrm{b})(\mathrm{b}+\mathrm{c})+/ \mathrm{b} * / \mathrm{c}$
$-a^{*} b+a^{*} c+/ b^{*} c+/ b^{*} / c$

00					
0	1	1	10		
0	1	0	1	1	
1	1	0	1	1	

$-/ b+a * b$

There is a Minimum Area Implementation

- $o=(a+b)(/ b+/ c)$

\[

\]

There is a Minimum Area Implementation

- Consider all combinations of less gates:
- any smaller with same truth table?
- There must be a smallest one.

Not Always MSP

- $\mathrm{o}=(\mathrm{a}+/ \mathrm{b})(\mathrm{b}+\mathrm{c})+/ \mathrm{b} * / \mathrm{c}$
$-a * b+a * c+/ b * c+/ b * / c$
$-/ b+a * b$
- o=/(/a*b)

00					01
0	1	0	1	10	
1	1	0	1	1	

Minimize Area

- Area minimizing solutions depends on the technology cost structure
- Consider:
- I1: ((a*b) + (c*d))*e*f
- I2: ((a*b*e*f)+(c*d*e*f))
- Area:
$-\mathrm{I} 1: 2^{*} \mathrm{~A}($ and 2$)+1 * \mathrm{~A}($ or2 2$)+1 * \mathrm{~A}($ and 3$)$
- I2: $2 * \mathrm{~A}($ and 4$)+1 * \mathrm{~A}($ or 2$)$

Minimize Area

- I1: ((a*b) + (c*d))*e*f
- I2: ((a*b*e*f)+(c*d*e*f))
- Area:
- I1: $2 * \mathrm{~A}($ and 2$)+1 * \mathrm{~A}($ or 2$)+1 * \mathrm{~A}($ and 3$)$
- I2: $2 * \mathrm{~A}($ and 4$)+1 * \mathrm{~A}($ or 2$)$
- all gates take unit area:
- I2<I1
- gate size proportional to number of inputs:
- I1<I2

Best Solution Depends on Costs

- This is a simple/obvious instance of the general point
- ...When technology costs change, the optimal solution changes.
- In this case, we can develop an automated decision procedure which takes the costs as a parameter.

Don't Cares

- Sometimes will have incompletely specified functions:
a b c o
0001
$\begin{array}{llll}0 & 0 & 1\end{array}$
0101
011 x
100 x
1010
1100
1110

Don't Cares

- Will want to pick don't care values to minimize implementation costs:

a	b	c	o	a b c o 0 0 0 1	0	0	0
0	0	0	1	1			
0	0	1	1	0	1	0	1
0	1	0	1	0	1	1	1
0	1	1	x	1	0	0	0
1	0	0	x	1	0	1	0
1	0	1	0	1	1	0	0
1	1	0	0	1	1	1	0

NP-hard in General

- Logic Optimization
- Two Level Minimization
- Covering w/ reconvergent fanout
- Is NP-hard in general
- ...but that's not to say it's not viable to find an optimal solution.
- Cover how to attack in CS137
- can point you at rich literature
- can find software to do it for you

Delay in Gates

- Simple model:
- each gate contributes a fixed delay for passing through it
- can be different delay for each gate type
- e.g.
- inv $=50 \mathrm{ps}$
- nand2=100ps
- nand3=120ps
- and2=130ps

Path Delay

- Simple Model: Delay along path is the sum of the delays of the gates in the path

Path Delay $=$ Delay(And3i2)+Delay(Or2)

Critical Path

- Path lengths in circuit may differ
- Worst-case performance of circuit determined by the longest path
- Longest path designated Critical Path

Multiple Paths

Path Delay $=$ Delay $($ Or2i1 $)+$ Delay (And2) + Delay $($ Or2 $)$

Path Delay = Delay(And3i2)+Delay(Or2)

Critical Path $=$ Longest

Path Delay $=3$

Path Delay $=2$

Critical Path

- There is always a set of critical paths
- set such that the path length of the members is at least as long as any other path length
- May be many such paths

Minimum Delay

- There is a minimum delay for a given function and technology cost.
- Like area:
- consider all circuits of delay $1,2, \ldots$.
- Work from 0 time (minimum gate delay) up
- stop when find a function which implements the desired logic function
- by construction no smaller delay implements function

Delay also depend on Costs

- Consider again:
$-\mathrm{I} 1:((\mathrm{a} * \mathrm{~b})+(\mathrm{c} * \mathrm{~d})) * \mathrm{e}^{*} \mathrm{f}$
- I2: $\left(\left(a^{*} b^{*} e^{*} f\right)+\left(c^{*} d^{*} e^{*} f\right)\right)$
- Delay:
- I1: D(and2)+D(or2)+D(and3)
- I2: D(and4)+D(or2)
- $\mathrm{D}($ and 2$)=130 \mathrm{ps}, \mathrm{D}($ and 3$)=150 \mathrm{ps}, \mathrm{D}($ and 4$)=170 \mathrm{ps}$
- I2<I1
- $\mathrm{D}(\mathrm{and} 2)=90 \mathrm{ps}, \mathrm{D}(\mathrm{and} 3)=100 \mathrm{ps}, \mathrm{D}($ and 4$)=200 \mathrm{ps}$

Delay and Area Optimum Differ

$-\mathrm{I} 1:((\mathrm{a} * \mathrm{~b})+(\mathrm{c} * \mathrm{~d})) * \mathrm{e}^{*} \mathrm{f}$
$-\mathrm{I} 2:\left(\left(\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{e}^{*} \mathrm{f}\right)+\left(\mathrm{c} * \mathrm{~d}^{*} \mathrm{e}^{*} \mathrm{f}\right)\right)$

- $D($ and 2$)=130 \mathrm{ps}, \mathrm{D}($ and 3$)=150 \mathrm{ps}, \mathrm{D}($ and 4$)=170 \mathrm{ps}$
$-\mathrm{D}(\mathrm{I} 2)<\mathrm{D}(\mathrm{I} 1)$
- gate size proportional to number of inputs:
$-\mathrm{A}(\mathrm{I} 1)<\mathrm{A}(\mathrm{I} 2)$
- Induced Tradeoff -- cannot always simultaneously minimize area and delay cost

Delay in Gates make Sense?

- Consider a balanced tree of logic gates of depth (tree height) n.
- Does this have delay n ? (unit gate delay)

Delay in Gates make Sense?

- Consider a balanced tree of logic gates of depth (tree height) n.
- Does this have delay n ? (unit gate delay)
- How big is it? (unit gate area)
- How long a side?
- Minimum wire length from input to output?

Delay in Gates make Sense?

- (continuing example)
- How big is it? (unit gate area)
-2^{n}
- How long a side?
$-\operatorname{Sqrt}\left(2^{\mathrm{n}}\right)=2^{(\mathrm{n} / 2)}$
- Minimum wire length from input to output?
$-2 * 2^{(\mathrm{n} / 2)}$
- Delay per unit length? (speed of light limit)
- Delay $\propto 2^{(\mathrm{n} / 2)}$

It's not all about costs...

- ...or maybe it is, just not always about a single, linear cost.
- Must manage complexity
- Cost of developing/verifying design
- Size of design can accomplish in fixed time
- (limited brainpower)
- Today: human brainpower is most often the bottleneck resource limiting what we ca build.

Review Logic Design

- Input specification as Boolean logic equations
- Represent canonically
- remove specification bias
- Minimize logic
- Cover minimizing target cost

If's

- If $\left(a^{*} b+/ a^{*} / b\right)$
- c=d
- else
- c=e
- $t=a * b+/ a * / b$
- $\mathrm{c}=\mathrm{t}^{*} \mathrm{~d}+/ \mathrm{t}^{*} \mathrm{e}$

If Mux Conversion

- Often convenient to think of IF's as Multiplexors
- If $\left(a^{*} b+/ a^{*} / b\right)$
$-c=d$
- else
$-\mathrm{c}=\mathrm{e}$

Muxes

- Mux:
- Selects one of two (several) inputs based on control bit

Mux Logic

- Of course, Mux is just logic:
$-\operatorname{mux}$ out $=/ s^{*} a+s^{*} b$

- Two views logically equivalent
- mux view more natural/abstract when inputs are multibit values (datapaths)

What about Tristates/busses?

- Tristate logic:
- output can be 1,0 , or undriven
- can wire together so outputs can share a wire
- Is this anything different?

Tristates

- Logically:
- No, can model correct/logical operation of tristate bus with Boolean logic
- Bus undriven (or multiply driven) is Don'tCare case
- no one should be depending on value
- Implementation:
- sometimes an advantage in distributed control - don't have to build monolithic, central controller

Finite Automata

- Recall from CS20
- A DFA is a quintuple $\mathrm{M}=\{\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{F}\}$
$-K$ is finite set of states
$-S$ is a finite alphabet
$-s \in K$ is the start state
- $\mathrm{F} \subseteq \mathrm{K}$ is the set of final states
- δ is a transition function from $K \times \Sigma$ to K

Finite Automata

- Less formally:
- Behavior depends not just on input
- (as was the case for combinational logic)
- Also depends on state
- Can be completely different behavior in each state
- Logic/output now depends on state and input

Minor Amendment

- A DFA is a sextuple $\mathrm{M}=\left\{\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{F}, \Sigma_{0}\right\}$
Σ_{o} is a finite set of output symbols
δ is a transition function from $K \times \Sigma$ to $K \times \Sigma_{\text {o }}$

What power does the DFA add?

Power of DFA

- Process unbounded input with finite logic
- State is a finite representation of what's happened before
- finite amount of stuff can remember to synopsize the past
- State allows behavior to depend on past (on context)

Registers

- New element is a state element
- Canonical instance is a register:
- remembers the last value it was given until told to change
- typically signaled by clock

Issues of Timing...

- ...many issues in detailed implementation
- glitches and hazards in logic
- timing discipline in clocking
- ...
- We're going to work above that level for the most part this term.
- Watch for these details in CS181

Same thing with registers

- Logic becomes:
- if (state=s1)
- boolean logic for state 1
- (including logic for calculate next state)
- else if (state=s2)
- boolean logic for state 2
- ...
- if (state=sn)
- boolean logic for state n

Finite-State Machine (FSM)

- Logic core
- Plus registers to hold state

State Encoding

- States not (necessarily) externally visible
- We have freedom in how to encode them
- assign bits to states
- Usually want to exploit freedom to minimize implementation costs
- area, delay, energy
- (again, algorithms to attach -- cs137)

Multiple, Interacting FSMs

- What do I get when I wire together more than one FSM?

Multiple, Interacting FSMs

- What do I get when I wire together more than one FSM?
- Resulting composite is also an FSM
- Input set is union of input alphabets
- State set is product of states:
- e.g. for every sai in A.K and sbi in B.K there will be a composite state (sai,bai) in AB.K
- Think about concatenating state bits

Multiple, Interacting FSMs

- In general, could get product number of states
$-|\mathrm{AB} \cdot \mathrm{K}|=|\mathrm{A}| *|\mathrm{~B}| \quad \ldots$ can get large fast
- All composite states won't necessarily be reachable
- so real state set may be $<|\mathrm{A}| *|\mathrm{~B}|$

Multiple, Interacting FSMs

- Multiple, "independent" FSMs
- often have implementation benefits
- localize inputs need to see
- simplify logic
- decompose/ease design
- separate into small, understandable pieces
- can sometimes obscure behavior
- not clear what composite states are reachable

FSM Equivalence

- Harder than Boolean logic
- Doesn't have unique canonical form
- Consider:
- state encoding not change behavior
- two "equivalent" FSMs may not even have the same number of states
- can deal with infinite (unbounded) input
- ...so cannot enumerate output in all cases

FSM Equivalence

- What matters is external observability
- FA accepts and rejects same things
- FSM outputs same signals in response to every possible input sequence
- Possible?
- Finite state suggests there is a finite amount of checking required to verify behavior

FSM Equivalence Flavor

- Given two FSMs A and B
- consider the composite FSM AB
- Inputs wired together
- Outputs separate
- Ask:
- is it possible to get into a composite state in which A and B output different symbols?
- There is a literature on this
- Prof. Hickey is an expert in this area.

FSM Specification

- St1: goto St2
- St2:
- if (I==0) goto St3
- else goto St4
- St3:
- output o0=1
- goto St1
- St4:
- output ol=1
- goto St2
- Could be:
- behavioral language
- computer language
- state-transition graph

Systematic FSM Design

- Start with specification
- Can compute boolean logic for each state
- including next state translation
- Keep state symbolic (s1, s2...)
- Assign states
- Then have combinational logic
- has current state as part of inputs
- produceds next state as part of outputs
- Design comb. Logic and add state registers

Big Ideas [MSB Ideas]

- Can implement any Boolean function in gates
- Can implement any FA with gates and registers

Big Ideas [MSB-1 Ideas]

- Canonical representation for combinational logic
- Transformation
- don't have to implement the input literally
- only have to achieve same semantics
- trivial example: logic minimization
- There is a minimum delay, area
- Minimum depends on cost model

