
CS184a Fall 2000

California Institute of Technology
Department of Computer Science

Computer Architecture

CS184a, Fall 2000 Assignment 3: Microcode Monday, October 9

Due: Monday, October 16, 10:30am

Everyone should do all problems.

You should use a schematic capture or drawing program for circuits.

For this assignment, you may assume the ALU behaves like a 74181 (functions attached) of
width w=32; it has outputs equal and not carry out, in addition to the w datapath output
bits.

For all µcode, your solution should resolve to individual bits. You may use symbolic names
as long as you give definitions for the symbolic names as part of your solution.

e.g. For the ALU-Operation to add A1 and B2, you would need to specify:

F3 F2 F1 F0 C M A[3:0] B[3:0]
1 0 0 1 1 0 0x01 0x02

You could define:

add = F3:F2:F1:F0:C:M==100110

and specify: add 0x01 0x02

1

CS184a Fall 2000

1. Spatial Programmable (Horizontal µcode) – Fill in the instruction bits necessary
to make this programmable datapath implement the quadratic equation: y = Ax2 +
Bx + C. A, B, and C are constants to be embedded in the implementation (as local
constants). x comes in on I0. y should come out on O6. Note pipeline register in
datapath. Take in one x on every cycle and produce one y on every cycle. Assume all
data busses are 32b wide.

*
�

ALU

*
�

ALU

*
�

ALU

*
�

ALU

*
�

ALU

*
�

ALU

*
�

ALU

6

0

*ALU

Topmost drives
�

One channel per block
(position of connection
 varies appropriately
 from block to block)

I0

Local
Constant

Asel

Bsel

Op
�

Opsel
�

O0
�

O6

mandatory
pipeline reg.

2

CS184a Fall 2000

2. Branching –

(a) Assuming the datapath below, based on the simple memory-based programmable
datapath in class, show the (vertical) µcode to implement: C = (A+B)mod D.

ALU
�

Aaddr
�

Baddr
Arw
�

Brw

Op

C
o

u
n

te
r

A
�

D

=

Max PC Counter setup to
 count 0,1,...MaxPC;
 assume you can set
 MaxPC appropriately.

Go

(see 181 ops)

A
−

B
an

k

B
−

B
an

k

32

16 memory
 slots each

• D is in B-bank, slot 0;

• A starts in A-bank, slot 1;

• B starts in B-bank, slot 1;

• C should end up in A-bank slot 0;

• A ≤ D, B ≤ D

• 0 < D < 2(w−1)

• The ALU has an arithmetic shift right operation beyond the operations listed
for the 181.

(b) Modify the datapath to allow execution to branch.

i. show revised datapath.

ii. show new µcode which implements the same modulus function now using the
branching capability.

iii. compare the cycles required with the branchless case.

3

CS184a Fall 2000

3. Unbounded Memory – Implement a simple prime number seive. Show datapath
and µcode.

• Modify your datapath above to add a divider and a memory.

• The divider should take in an A and B value like the ALU (in parallel with the
ALU) and produce two outputs, the dividend and remainder. (you can assume
the divider works and works in a single cycle; you don’t need to show any logic
for the divider.)

• The new memory will be a single ported SRAM, a power of two in size (not to
exceed 230). You can assume someone placed the size of the memory in B15 before
you start.

• The seive works by creating the list of all primes working up from 2. For each new
candidate prime, you simply test if it is divisible by any of the primes already
in the partially completed list of primes (i.e. all primes less than the current
candidate prime). When you find a prime, you add it to the list.

• Your program should stop when the memory is full or when you exhaust your
integer representation (231).

• There are almost certainly more clever algorithms; stick with this one. The idea
is to design a simple datapath including a memory and control. The specific
example is intended only to be motivational.

4

