Simulation with Meshes	
CS 176 Winter 2011	

ANIMATION

Example: Cloth

- time evolution of a mesh subject to
- internal forces
- stretch and bending
- external forces
- gravity, drag, user applied forces
- setting it up

SETUP

DISCRETIZATION

Time stepping

- forward Euler $\binom{\Delta x}{\Delta v}=d t\binom{v_{0}}{M^{-1} f_{0}}$
- backward Euler
$\binom{\Delta x}{\Delta v}=d t\binom{v_{0}+\Delta v}{M^{-1} f\left(x_{0}+\Delta x, v_{0}+\Delta v\right)}$
- implicit equation! BUT: stable!

Time Stepping

Final equation

$\left(I-d t M^{-1} \frac{\partial f}{\partial v}-d t^{2} M^{-1} \frac{\partial f}{\partial x}\right) \Delta v=d t M^{-1}\left(f_{0}+d \frac{\partial f}{\partial x} v_{0}\right)$

- now just need f...
- classic approach: potential energy - force follows as negative gradient

```
Energies And Forces
    Approaches
    ■ continuum models
            - discretization through finite
                elements/volumes/differences
    - discrete models
            - simplest example: mass/spring
                systems
```

CS 176 Winter 2011

BARAFF \& WITKIN

Constraints as key element

- forces given directly - in a moment...
- equilibrium as vanishing condition

CS 176 Winter 2011

Forces Continued

Need further derivatives

- stiffness matrix

$$
\begin{gathered}
K=\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial v}=0 \\
K_{i j}=\frac{\partial f_{i}}{\partial x_{j}}=-k\left(\frac{\partial C(x)}{\partial x_{i}} \frac{\partial C(x)^{T}}{\partial x_{j}}+\frac{\partial^{2} C(x)}{\partial x_{i} \partial x_{j}} C(x)\right)
\end{gathered}
$$

Damping Forces

C(X) Functions

What do we want?

- resist stretch and shear
- measure with the deformation tensor
$f(v)=a \quad f(w)=b$

$C(x)=\left(\partial f \partial f^{T}\right)-I$
$\phi: T_{e} \rightarrow T_{g} \quad \psi: T_{e} \rightarrow T_{h}$ ${ }_{10}$

Deformation Gradient

$\begin{aligned} f & =\psi \circ \phi^{-1} \\ \partial f & =\partial \psi \partial \phi^{-1} \end{aligned}$	
$\partial \psi^{T} \partial \psi=\left(\begin{array}{cc} \langle a, a\rangle & \langle a, b\rangle \\ \langle b, a\rangle & \langle b, b\rangle \end{array}\right)$	$\phi: T_{e} \rightarrow T_{g} \quad \psi: T_{e} \rightarrow T_{h}$

$$
\partial \phi^{-1} \partial \phi^{-1^{T}}=\left(\begin{array}{ll}
\langle w, w\rangle & -\langle v, w\rangle \\
-\langle\nu, w\rangle & \langle v, v\rangle
\end{array}\right) \frac{1}{(\operatorname{det} \partial \phi)^{2}} \quad \text { constant... }
$$

CS 176 Winter 2011

OY VE...
What else?
$■$ actual constraints...
\quad point constraints easy
(let's just leave it at that for now)
Bending \quad much smaller component but can be important
CS 176 Winter 2011

BENDING
Guess what: dihedral angle

- next time

