

## BaRyCENTRIC COORDINATES

## Interpolation

- given data at sites, interpolate smoothly and intuitively "in between"
- easy over simplices: linear
- more general shapes needed
- morphing, shape deformation, attribute interpolation, physical modeling, and on and on and on

```
CS 176 Winter 2011
```


## Basic Principles

Data on boundary; extend

- as affine combination:
if $p=\sum_{j=1}^{n} k_{j}(p) P_{j}$ then $f(p)=\sum_{j=1}^{n} k_{j}(p) f\left(P_{j}\right)$
- desirables
- constant precision: $\sum k_{j}(x)=1$
- linear precision: $\quad \sum k_{j}(x) x_{j}=x$
- convex: many choices; concave: few...

CS 176 Winter 2011
Basic Setup: Cage


- from now on, we'll focus on Weber/Ben-Chen/Gotsman's method CS 176 Winter 2011


## PROPERTIES

Complex barycentric interpolation

- preserve similarities
- distinction with real coeffs?
- preserve affine transformation iff

$$
\sum \bar{k}_{j}(z) z_{j}=z
$$

- not actually desirable... why?



## TRADE-0FF

Must give up something... - not interpolating anymore

How to find such functions?

- study continuous setting $\oint_{S} k(w, z) d w=1 \quad \oint_{S} k(w, z) w d w=z$
$g_{S, f}(z)=\oint_{S} k(w, z) f(w) d w$
CS 176 Winter 2011


## Cauchy Formula

Holomorphic functions

- Cauchy kernel: $\quad \boldsymbol{C}(\boldsymbol{w}, z)=\frac{\mathbf{1}}{\mathbf{2 \pi i}} \frac{\mathbf{1}}{\boldsymbol{w}-\boldsymbol{z}}$

$$
h(z)=\frac{1}{2 \pi i} \oint_{S} C(w, z) h(w) d w
$$

- integral version of mean value theorem - recover value from average of boundary

■ Cauchy coordinates:

$$
\begin{aligned}
& \text { ordinates: } \\
& \operatorname{sg}, f^{f}(z)=\frac{1}{2 \pi i} \oint_{S} \frac{f(w)}{w-z} d w
\end{aligned}
$$

## Resulting Formulas

$$
c_{j}(z)=\frac{1}{2 \pi i}\left(\frac{B_{j+1}(2)}{A_{j+1}} \log \left(\frac{B_{j+1}(2)}{B_{j}(z)}\right)-\frac{B_{j-1}(2)}{A_{j}} \log \left(\frac{B_{j}(z)}{B_{j-1}(z)}\right)\right)
$$



CS 176 Winter 2011


## PROPERTIES

Best holomorphic function?

- it doesn't interpolate; is it "best"?
- closest to given boundary data
- stick with $\mathrm{C}_{\mathrm{j}}$ but use "virtual" poly.

$$
g_{U}(z)=\sum C_{j}(z) u_{j}
$$

- minimize functional to find best poly.

$$
\min _{U} E_{S}\left(g_{U}\right)
$$

CS 176 Winter 2011

## SOLUTION

Pseudo inverse

$$
u=C^{+} f_{S}=\left(C^{*} C\right)^{-1} C^{*} f_{S}
$$

- size is number of vertices (small)

$$
g_{S, f}^{\text {Szegö }}(z)=\sum G_{j}(z) f_{j}
$$

$\square$ letting H be sampling operator:

$$
\begin{aligned}
f_{S} & =H F \\
u & =C^{+} f_{S}=M F
\end{aligned} \quad G_{j}(z)=\sum_{j=1}^{j=n} C_{i}(z) M_{i, j}
$$




Cauchy-Green vs Szego

```
CS 176 Winter 2011
```



$$
\begin{aligned}
& \text { PO I N T - T O-P O I N T } \\
& \hline \text { Simplify UI } \\
& \text { ■ just specify landmarks } \\
& \text { ■ underconstrain (typically) } \\
& \text { ■ add fairness constraint } \\
& E_{S}^{\text {smooth }}(g)=\oint_{S}\left|g^{\prime \prime}(w)\right|^{2} d w \\
& \quad E_{S}^{\text {pts }}(g)=\sum_{i=1}^{i=p}\left|g\left(r_{i}\right)-f_{i}\right|^{2} \\
& \hline
\end{aligned}
$$

CS 176 WInter 2011

## P2P Coordinates

Joint minimization

$$
\begin{gathered}
E_{S}^{\mathrm{P} 2 \mathrm{P}}(g)=E_{S}^{\mathrm{pts}}(g)+\lambda^{2} E_{S}^{\mathrm{smooth}}(g) \\
\text { point collocation... } \\
E_{S}^{\mathrm{P} 2 \mathrm{P}}(g)=\left\|C_{u}-f_{s}\right\|^{2}+\|\lambda D\|^{2} \quad N=\binom{c}{\lambda D}^{+} \\
g_{S, F}^{\mathrm{P} 2 \mathrm{P}}(z)=\sum_{i=1}^{p} P_{i}(z) f_{i} \quad P_{i}(z)=\sum_{j=1}^{n} C_{j}(z) N_{j, i}
\end{gathered}
$$

ExAMPLE


CS 176 Winter 2011


