
How to Dual-Boot OS X and Ubuntu

Nailen Matschke - nailen@caltech.edu

10/3/2015

What you need:

1. A USB drive with at least 2 GB of space, that you don’t mind wiping

2. A copy of Ubuntu (available here), or an Ubuntu-based Linux distribution (e.g. Mint)

3. A Mac running OS X, with at least 50 GB of unused disk space

In this guide, I’ll be installing Ubuntu 15.04 on my MacBook Pro running OS X El Capitan, version 10.11.1
Beta.

Part 1: Creating a bootable USB drive

When adding a new OS, I like to start by creating the installation media, since it’s the step least likely
to do any damage to the computer. First, you’ll want to plug your flash drive into your computer, and open
up Disk Utility (in /Applications/Utilities/). Make sure that it’s listed in Disk Utility’s sidebar, probably
under the “External” category. Now, select the drive so that its information appears in the main window,
and then click on “Erase” at the top of the window. This will give you a drop down menu with options for
how you want to format the drive, in which you should give it a memorable name, and change the “Format”
field to “MS-DOS (FAT),” like so:

1

http://www.ubuntu.com/download/desktop

You can leave the “Scheme” field untouched. Hit “Erase,” and the drive should be wiped and formatted
within a few seconds. You can check that the process worked by opening up Terminal (also in /Applica-
tions/Utilities/) and running the diskutil list command, which will print out a list of your drives and
their partitions, like this:

The above image tells me that the USB drive is accessible at the path /dev/disk1, which has the correct
partition scheme, format, and label. Disk Utility should also say the drive’s path, in the “Device” field.

Your drive was probably automatically mounted by Finder after it was created, so next you want to
unmount it via Terminal using the command:

diskutil unmountDisk /dev/diskN

where N is the number at the end of the drive’s path, which in my case is N = 1. Now, your drive is
ready to be made into a bootable live USB for installing Ubuntu. Unfortunately, OS X doesn’t play well
with the ISO image format that distributions like Ubuntu typically come in, so we have to convert it to an
Apple disk image (.dmg) file instead. All this requires is running the following command in terminal:

hdiutil convert -format UDRW -o /path/to/image.dmg /path/to/image.iso

2

replacing “/path/to/image” with wherever your file is, e.g. /Users/Nailen/Desktop/Media/ubuntu-15.04-
desktop-amd64. This should finish in under a minute, after which we can go ahead and clone this image to
the USB drive with:

sudo dd if=/path/to/image.dmg of=/dev/rdiskN

which will require your password. The reason we use “rdiskN” instead of “diskN” here is that the for-
mer basically just writes the data from the start of the disk, whereas the latter has to pass through more
layers of software abstraction. This process can take a while, but once it’s done you should see a message
confirming that the image has been copied, like this:

(I used a .img extension instead of .dmg, but it shouldn’t matter.) Don’t worry if Finder complains about
not being able to read the drive, that’s normal. If you made it this far, your USB drive should be a bootable
instance of Ubuntu, from which you can install the OS on your computer itself.

3

Part 2: Preparing your Mac

The next step is to create space on your Mac’s hard drive for Ubuntu. Go back to Disk Utility, and
select your computer’s built-in hard drive under the “Internal” category, which will likely have a name along
the lines of “APPLE HDD HTS727575A9E362 Media.” Make sure you’re looking at the drive itself, and
not one of its partitions, e.g. “Macintosh HD,” and from there, select the “Partition” option in the top bar,
which will show a drop down menu to partition the disk. We actually have to create two partitions: a small
boot loader that your Mac’s firmware will read at startup, and a large one to hold all of your Ubuntu files.
Hit the “+” button to create a new partition, and make it 128 MB with the “OS X Extended (Journaled)”
format, and a name such as “Ubuntu Boot Loader.” Hit “Apply,” and then create another partition with
a name you’ll remember, and a decent amount of size - 50 GB should be enough, but it doesn’t hurt to go
with more if you can spare it. It doesn’t matter what the partition’s format is, since we’ll be changing that
during the install process anyway. Go ahead and hit “Apply,” and wait a couple minutes for the process to
complete. Your computer might be a bit unresponsive during the partitioning, which is also normal.

Part 3: Installing Ubuntu

Now that your computer has a space for Ubuntu, and you have a flash drive to install it with, it’s time
to reboot and install. Reboot your computer, and hold down the “Option” key until you see a grey screen
with an image of a hard drive named “Macintosh HD,” and two orange flash drives named “EFI Boot.”
Selecting either of the latter two should bring you to a black screen with a few options, including “Try
Ubuntu” and “Install Ubuntu.” Choose the former, which should already be selected, and your computer
will boot into the Ubuntu desktop. There should be an icon which says “Install Ubuntu,” which you should
double-click to bring up the installer. Proceed through the installation process, selecting “Download updates
while installing” and “Install this third-party software” on this screen:

When you get to the “Installation type” step, STOP! This is the point where we configure that partition we
made earlier for Ubuntu. Select “Something else,” like so, and continue:

4

This will bring you to a rudimentary partition editor. Find the partition you created earlier, which should
have the same size, be of format HFS+, and be almost entirely empty; click on it, and then click “-” to erase
it to free space. If you’re still not sure you have the right partition, you can use the pre-installed GParted
Partition Editor to finish this section, as it has a similar interface but provides more detail. Now, we have
to create at least two partitions: one to use as a swap for your RAM, and one to use for everything else. To
do this, make sure the free space is selected, and hit the “+” button. This will bring up a window like this:

Set the partition size to the same as your RAM (remembering that 1 GB = 1024 MB), and the “Use as:”
field to “swap area,” then hit “OK.” Repeat this process, instead letting the size be as large as the remaining
free space, and selecting the partition for use as an “ext4 filesystem,” with the mount point /. Make a note
of the index of this partition, i.e. the N in /dev/sdaN. Those who have used Linux before might also at this
point want to create separate partitions for /boot, /home, et cetera, which isolates disk errors and allows
parts of the filesystem to be encrypted independently, but this is not necessary. Once you’re done, select
the ext4 partition as the “Device for boot loader installation,” and continue with the rest of the installation.
When it finishes, you’ll be prompted to reboot or continue testing Ubuntu; you should opt not to reboot
since we still have one thing left to do.

5

Part 4: Making Ubuntu bootable

We’re now at the home stretch. Ubuntu has been installed on your computer, but you won’t be able to
boot into it since there’s no EFI boot loader, needed for Mac firmware to recognize the OS as bootable. So,
we need to go into the Ubuntu installation and create a boot.efi file that we’ll use to boot it. While still
inside your live USB instance of Ubuntu, open up a Terminal window, and run the following command to
mount the ext4 partition you created at the path /mnt:

sudo mount /dev/sdaN /mnt

You’ll also need to mount several of the top-level directories, which is easiest to do with the command:

for i in /dev /dev/pts /proc /sys /run; do sudo mount -B i /mnti; done

Now, we can use the chroot command to change our root directory to /mnt, so that the bash session
in the Terminal is effectively running inside the Ubuntu installation:

sudo chroot /mnt

This allows us to configure GNU GRUB, the “GRand Unified Bootloader,” with:

grub-mkconfig -o boot/grub/grub.cfg

and then save this to a standalone file with:

grub-mkstandalone -o boot.efi -d usr/lib/grub/x86 64-efi -O x86 64-efi --compress=xz boot/grub/grub.cfg

You can then exit the chrooted partition with the exit command. The boot.efi file is still in the new
installation, however, so you’ll have to use the cp command to copy it to somewhere like ˜/Documents/,
from which you can move it to somewhere you can access it from OS X, such as another USB drive or Google
Drive:

cp /mnt/boot.efi ~/Documents/

Once you’ve saved this file, you can reboot your Mac to OS X.
Back in OS X, we want to open up a Terminal window, and cd into the boot loader partition we created

earlier:

cd /Volumes/Ubuntu\ Boot\ Loader/

In order to make this recognizable by Apple’s firmware, we have to create the mach kernel and Sys-
tem/Library/CoreServices directories, the latter of which will store our boot.efi file from before, along with a
“SystemVersion.plist” file which provides configuration information. The commands to do this are as follows:

sudo mkdir System mach kernel

cd System

sudo mkdir -p Library/CoreServices (the -p option tells mkdir to create intermediate directories)
cd Library/CoreServices

Now, we copy boot.efi to the CoreServices folder. If you uploaded it to Google Drive like I did, you can then
download it from OS X, and then copy it from your Downloads folder with:

6

sudo cp ~/Downloads/boot.efi ./

Then, we have to create the SystemVersion.plist file. If you’re familiar with a command-line text editor
such as vim, you can just run it with sudo; otherwise the easiest way to do this is probably to create the
file in your Documents folder with TextEdit, and then copy it over via the same method as boot.efi. Either
way, it should contain the exact following contents:

<xml version="1.0" encoding="utf-8"?>

<plist version="1.0">

<dict>

<key>ProductBuildVersion</key>

<string></string>

<key>ProductName</key>

<string>Linux</string>

<key>ProductVersion</key>

<string>Ubuntu Linux</string>

</dict>

</plist>

This defines a dictionary of key-value pairs identifying the Ubuntu OS. The indents can be done with
tabs or spaces; they’re purely stylistic, as the XML tags will be parseable even without indentation. Once
this is in the CoreServices folder, we’re almost done! All we have to do is “bless” the partition for booting,
and set the boot flag, like so:

sudo bless --device /dev/disk0sN --setBoot

In this case, N is the index of the boot loader partition; because I have a bunch of partitions for
my Arch Linux installation, and I accidentally created the boot loader partition after installing Ubuntu,
N = 12 on my machine. You should check that you have the right number, and that the partition is also
on disk0, by opening up Disk Utility again, and looking at the “Device” field of the Ubuntu Boot Loader
partition:

7

The --setBoot flag sets Ubuntu partition as the default boot device, so if you’d prefer to keep OS X as your
primary OS, just don’t include it in the command.

If you’ve made it this far, your Ubuntu installation should work! Unplug the USB installation drive,
and give it a try by rebooting your computer, while holding down the “option” key. In addition to your
Macintosh HD, you should see a new image of a hard drive, labeled “EFI Boot.” This is Ubuntu, and
selecting it will allow you to boot to your new Linux desktop.

8

