CS/CNS/EE 155: Probabilistic Graphical Models
Problem Set 2

Handed out: 21 Oct 2009

Due:

4 Nov 2009

1 Tree Augmented Naive Bayes [40 points]

In this problem, you should hand in a printout of your MATLAB implementation. Also email
a zip archive with the source code to the TAs. The training data set is given in a file called
trainingData.txt, available on the course webpage. There are 200 training examples. Each
row of the data in the file is a training example. Given a sample, the 1st column is the class
variable C , and the 2nd to the 6th columns are the attributes Ay, As, As, A4, As. The testing
data set is given in a file called testingData.txt. There are 100 testing samples, with the
same format for each sample.

1.

Learning a Naive Bayes model. You are asked to learn a naive Bayesian network
based on a given training data set. The structure of the naive Bayes Network is given
as follows:
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Figure 1: Naive Bayes network.

Estimate the parameters for the conditional probability distributions in the network
using MLE on the training data. Based on the constructed naive Bayesian network you
can classify samples by applying Bayes rule to compute conditional class probabilities
P(C|A1, Ag, A3, Ay, As), and predicting the label with the highest probability.

Please write down the parameters ¢ and 64,)c, and the percentage of classification
error on the testing data set.

Learning a Tree Augmented Naive Bayes (TAN) model. Tree augmented naive
Bayes models are formed by adding directional edges between attributes. After removing
the class variable, the attributes should form a tree structure (no V-structures). See Fig.
as an example.

Use the following procedure to learn the tree augmented naive Bayes model for the
training data, then draw the structure of the obtained model.



Figure 2: An example of a tree augmented naive Bayes network.

(a) Compute I5 (Ai; A;|C') between each pair of attributes, i # j, where I5_(As; 4;(C)
is the cond1t10nal mutual information (with respect to the emp1rlcal distribution
Pp on the training data) between A;, A; given the class variable.
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(b) Build a complete undirected graph in which the vertices are the attributes A, As, As, Ay, As.
Annotate the weight of an edge connecting A; and A; by Ip (Az, A;|C).

(c¢) Build a maximum weighted spanning tree.

(d) Transform the resulting undirected tree to a directed one by choosing a root variable
and setting the direction of all edges to be outward from it.

(e) Construct a tree augmented naive Bayes model by adding a vertex labeled by C
and adding an directional edge from C to each A;.

3. TAN for classification. Based on the structure above, you are asked to estimate the
parameters for conditional probability distributions using the training data set (using
MLE). Then you can classify the testing data set by computing the highest probability
P(C|A1, Ay, Az, Ay, As).

What is the percentage of classification error for the testing data set? Please compare
this result with that using naive Bayesian structure, and explain why it performs better
or worse.

4. Inference. Based on the TAN model constructed above (the network structure, ¢ and
04,|Pa, With 1 <4 <5), answer the following questions:

(a) If Ay = 1,As = 0, A3 = 0 are observed, what is the most likely assignment for
(C, Ay, A5)?

(b) If A1 =0, Ay = 0 are observed, what is the most likely assignment for A5? In this
case, what’s the probability for this most likely assignment?



2 Score equivalence [20 points]

1. K2 prior. Show that the Bayesian score with a K2 prior in which we have a Dirichlet
prior Dirichlet(1,1,...,1) for each set of multinomial parameters is not score-equivalent.

Hint: Construct a data set for which the score of the network X — Y differs from the
score of the network X « Y.

2. BDe score equivalence. Assume that we have a BDe prior specified by an equivalent
sample size o and prior distribution P’. Prove the following:

(a) Consider networks over the variables X and Y. Show that the BDe score of X — Y
is equal to that of X « Y.

(b) Show that if G and G’ are identical except for a covered edge reversal of X — Y,
then the BDe score of both networks is equal.

(c) Show that the proof of score equivalence follows from the result in Part and
Theorem 3.9 of [KF09].

(d) Given the above results, what are the implications for learning optimal trees?

3 The Gaussian Distribution [30 points]

Preamble. The multivariate Gaussian (or Normal) distribution over the D dimensional
continuous random vector x = [x1,x9,...,zp]| has a joint probability distribution given by

1
Nl ) = (2) P2 2exp (g i) 2 - ) )
where p is the mean vector of length D, and X is the (symmetric and positive definite)

covariance matrix, of size D x D. We sometimes write x ~ N(u, X) as a shorthand for the
above.

Additionally, it is sometimes preferable to work with the precision matriz, which is just the
inverse of the covariance, A = X!, In this case, we use the notation x ~ N(pu, A_l).

We also point out the matrix inversion lemma
Z+UuwvhHt=z'—zluyw+vTizlu)y-tvTz!

which will be useful below in rewriting the joint distribution as a factored distribution.

Let x and y be two jointly Gaussian random vectors
PO
x _ _ My A C _ My A C

1. Show that the marginal distribution of x is N'(u,, A), i.e.,
x ~ N(py, A),



ie.,

/p(x,y)dyz//\/q Z; ] ; [ CAT ngy:N(umA)

2. (a) Show that the conditional distribution of x given y is
X‘y ~ N(p’x + CB_I(y - ’j’y)v A - CB_ICT)'

(b) Equivalently, show that x|y in terms of the precision matrix
A C
A= ~ ~
B
is ~

x|y ~N(p, — A 'Cly — p,), A7),

3. Conjugate prior of multivariate Gaussian with known covariance

Preamble. For a multivariate Gaussian N (x|p, A) in which both the mean g and the
precision A are unknown, the conjugate prior is the Gaussian- Wishart distribution:

p(ll‘v A|H0, 6) W’ V) = N(H"“Ov (ﬂA)_l)W(A|W7 V)
where the Wishart distribution is given by
1
W(A|W,v) = B(W,v)|A|=P=D/2 exp <—2mw—1A)>

and
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and W is a D x D symmetric, positive definite matrix (see the appendix of [Bis06]).
The parameter v is called the number of degrees of freedom of the distribution and is
restricted to v > D — 1.

Conjugate prior for the mean of a 1D Gaussian. In the case of 1-dimensional

Gaussians, where the variance o is known, the data D = (1, ..., 2y), and the likelihood
is given by
N 1 1 X
_ _ 2
Pl = Tt = oo (- 3

show that the conjugate prior for the mean is given by
p(p) = N(plno, od),
and provide the parameters for the posterior, p(u|D).

4. The exponential family The exponential family of distributions over x, given param-
eters 77, is defined to be the set of distributions of the form

p(x|n) = h(x)g(n) exp(n u(x))

Show that the multivariate Gaussian can be expressed as a member of the exponential
family.



4 MAP versus MPE [10 points]

Show that the MAP (mazimum a-posteriori) assignment does not necessarily equal the MPE
(Most Probable Explanation). I.e., construct a Bayes net such that the most likely config-
uration of all variables does not agree with the most likely assignment to a single variable
(marginalizing out the remaining variables).

References

[Bis06] C. Bishop. Pattern Recognition and Machine Learning. Springer Science+Business
Media, LLC, New York, NY, 2006.

[KF09] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
The MIT Press, Cambridge, MA, 2009.



	Tree Augmented Naive Bayes [40 points]
	Score equivalence [20 points]
	The Gaussian Distribution [30 points]
	MAP versus MPE [10 points]
	References

