Introduction to Artificial Intelligence

Lecture 19 – Reinforcement Learning

CS/CNS/EE 154

Andreas Krause

Announcements

- Exam:
 - December 8 10am till December 9 10am
 - Details posted on webpage
 - Recitation this Thursday
- Final project due December 7
- PLEASE fill out the course evaluation forms!
 Your feedback is extremely important!

Learning BN from Data

- Two main parts:
 - Learning structure (conditional independencies)
 - Learning parameters (CPDs)

Е	В	А	M	J
0	0	0	0	0
1	0	1	1	0
1	0	1	1	1
0	1	1	0	1
0	1	0	0	1
•••	•••	•••	•••	•••

Algorithm for Bayes net MLE

- Given:
 - Bayes Net structure G
 - Data set D of complete observations
- For each variable X_i estimate

$$\theta_{X_i|\mathbf{Pa}_i} = \frac{Count(X_i, \mathbf{Pa})}{Count(\mathbf{Pa}_i)}$$

Results in globally optimal maximum likelihood estimate!

Pseudo-counts

- Make prior assumptions about parameters
- E.g.,: A priori, assume coin to be fair
- Practical approach: Assume we've seen a certain number of heads / tails:

$$\theta_{F=c} = \frac{Count(F=c) + \alpha_c}{N + \alpha_c + \alpha_l}$$
 "Pseudocounts"

 Looks like a hack.. In fact, this is equivalent to assuming a Beta prior

(Similar to the Gaussian prior for weights in regression)

Learning parameters for dynamical models

Summary

- To learn a Bayes net, need to
 - Learn structure
 - Learn parameters
- If all variables are observed
 - Get maximum likelihood parameter estimate by counting
 - Use pseudo-counts (Beta prior) to avoid overfitting
- Search for structure by maximizing score function
 - Score = Likelihood for best choice of parameters
- Can find optimal trees efficiently!

Learning from actions

Action	Reward	
Forward	0	
Left	0	
Forward	0	
Right	0	
•••		
Forward	10	

- Want to learn a mapping from actions to rewards
- Credit assignment problem: which actions got me to the large reward??

Reinforcement learning

Agent actions *change* the state of the world (in contrast to supervised learning)

```
World: "You are in state x<sub>17</sub>. You can take actions a<sub>3</sub> and a<sub>9</sub>"
Agent: "I take a<sub>3</sub>"
World: "You get reward -4 and are now in state x<sub>279</sub>. You can take actions a<sub>7</sub> and a<sub>9</sub>"
Agent: "I take a<sub>9</sub>"
World: "You get reward 27 and are now in state x<sub>279</sub>... You can take actions a<sub>2</sub> and a<sub>17</sub>"
...
```

Assumption: States change according to some (unknown) MDP!

RL = Planning in unknown MDPs

Solving the Credit Assignment Problem

State	Action	Reward
PU	Α	0
PU	S	0
PU	Α	0
PF	S	0
PF	Α	10
PF	Α	10
•••	•••	•••

Observed state transitions and rewards let you **learn** the underlying MDP!

Planning in MDPs

Deterministic policy

- $\pi: X \rightarrow A$
- Induces a Markov chain: with transition probabilities

$$X_1, X_2, ..., X_t, ...$$

$$P(X_{t+1}=x' \mid X_t=x) = P(x' \mid x, \pi(x))$$

• Expected value
$$J(\pi) = E[r(X_1, \pi(X_1)) + \gamma r(X_2, \pi(X_2)) + \gamma^2 r(X_3, \pi(X_3)) + ...$$

Computing the value of a policy

ullet For fixed policy π and each state x, define value function

$$V^{\pi}(x) = J(\pi \mid \text{start in state } x) = r(x, \pi(x)) + E[\sum_{t} \gamma^{t} r(X_{t}, \pi(X_{t}))]$$

Recursion:
$$\sqrt{T}(x) = r \left(x_{1}\pi(x)\right) + \gamma \left[\frac{1}{2}\sum_{k}x^{k-1} r \left(x_{k}\pi(x_{k})\right)\right]$$

$$= r \left(x_{1}\pi(x)\right) + \gamma \left[\frac{1}{2}\sum_{k}x^{k-1} r \left(x_{k}\pi(x_{k})\right)\right]$$
and $J(\pi) = \begin{cases} r \left(x_{1}\pi(x)\right) + \gamma \left[\frac{1}{2}\sum_{k}x^{k-1} r \left(x_{k}\pi(x_{k})\right)\right] \\ \sqrt{T}(x_{1}) - \sqrt{T}(x_{1}) - \sqrt{T}(x_{1}) \\ \sqrt{T}(x_{1}) - \sqrt{T}$

Value functions and policies

Every value function induces a policy

Every policy induces a value function

Thm: Policy optimal ⇔ greedy w.r.t. its induced value function

Two basic approaches

- 1) Model-based RL ("Approximate dynamic programming")
 - Learn the MDP

```
Estimate transition probabilities P(s' | s,a)
```

- Estimate reward function r(s,a)
- Optimize policy based on estimated MDP

- 2) Model-free RL (later)
 - Estimate the value function directly

Learning the MDP

- Need to estimate
 - transition probabilities P(X_{t+1} | X_t, A)
 - Reward function r(X,A)
- Can use techniques from last lecture (regularized maximum likelihood estimate)!
- Data set: $(X_1, \alpha_1, \Upsilon_1, X_2); (X_2, \alpha_2, \Upsilon_2, X_3); (X_3, \alpha_3, \Upsilon_3, X_4)...$ $P(X_{t+1} = x | X_t = x', A>a) = \underbrace{Count(X_{t+1} = x_1, X_t = x', A=a)}_{Count(X_t = x', A=a)}$

$$\gamma(X, a) = \frac{1}{N_{X,a}} \sum_{\xi : X_{\xi} : x, A_{\xi} : a} \gamma_{\xi}$$

RL is different from supervised learning

- So far, we have assumed we get i.i.d. data
- In reinforcement learning, the data we get depends on our actions!
- Some actions have higher rewards than others!
- Dilemma: Should we "collect more training data" or "choose high-reward actions"?

Exploration—Exploitation Dilemma in RL

Should we

- Exploit: stick with our current knowledge and build an optimal policy for the data we've seen?
- Explore: gather more data to avoid missing out on a potentially large reward?

Possible approaches

- Always pick a random action?
 - Will eventually correctly estimate all probabilities and rewards ©
 - May do extremely poorly!

- Always pick the best action according to current knowledge (solve MDP with estimated parameters)?
 - Quickly get some reward
 - Can get stuck in suboptimal action!

Possible approaches

- ε_n greedy
 - With probability ε_n : Pick random action
 - With probability $(1-\varepsilon_n)$: Pick best action

- Will converge to optimal policy with probability 1
- Often performs quite well
- Doesn't quickly eliminate clearly suboptimal actions

The R_{max} Algorithm [Brafman & Tennenholz '02]

Optimism in the face of uncertainty!

- If you don't know r(s,a):
 - Set it to R_{max}!
- If you don't know P(s' | s,a):
 - Set P(s* | s,a) = 1 where s* is a "fairy tale" state:

Implicit Exploration Exploitation in R_{max}

Three actions:

- Left
- Right
- Dig

Never need to explicitly choose whether we're exploring or exploiting!

Can rule out clearly suboptimal actions very quickly

Exploration—Exploitation Lemma

Theorem: Every T timesteps, w.h.p., R_{max} either

- Obtains near-optimal reward, or
- Visits at least one unknown state-action pair

 T is related to the mixing time of the Markov chain of the MDP induced by the optimal policy

The R_{max} algorithm

Input: Starting state x_0 , discount factor γ Initially:

- Add fairy tale state x* to MDP
- Set $r(x,a) = R_{max}$ for all states x and actions a
- Set $P(x^* \mid x,a) = 1$ for all states x and actions a
- Choose optimal policy for r and P

Repeat:

- Execute policy π
- For each visited state action pair x, a, update r(x,a)
- Estimate transition probabilities P(x' | x,a)
- If observed "enough" transitions / rewards, recompute policy π according to current model P and r

How much is "enough"?

How many samples do we need to accurately estimate P $(x' \mid x,a)$ or r(x,a)??

Hoeffding-Chernoff bound:

ullet X_1 , ..., X_n i.i.d. samples from Bernoulli distribution w. mean μ

$$P(\left|\mu - \frac{1}{n}\sum_{i} X_{i}\right| \ge \varepsilon) \le 2\exp(-2n\varepsilon^{2})$$

Sps want Error
$$\leq \varepsilon$$
 v. prob. $\geq 1-s$
Need $m \geq c \cdot \frac{1}{\varepsilon^2} \log \frac{1}{s}$

Performance of R_{max} [Brafman & Tennenholz]

Theorem:

With probability 1- δ , R_{max} will reach an ϵ -optimal policy polynomial in |S|, |A|, T, 1/ ϵ and 1/ δ

Problems of model-based RL?

• Memory required:

Need: $P(X_{t+1}[X_t, A_t) \supset Gout(X_{t+1}X_t, A_t))$ $|S|^2 \cdot |A|$ $P(X_{t+1}A_t) \rightarrow O(|S| \cdot |A|)$

Computation time:

Need to compute opt. policy

E.g. policy iteration, need to compute

Value for. => O(15131

Problems of model-based RL?

- Memory required: |A| |S|^2
- Computation time:
 - Need to frequently recompute optimal policy!

Model free RL

- Recall:
 - Optimal value function $V^*(x) \rightarrow opt.$ policy π^*
 - For optimal value function it holds:

$$V^*(x) = max_a Q(x,a)$$

$$V^*(x) = \max_a Q(x,a)$$

where $Q(x,a) = r(x,a) + \gamma \sum_{x'} P(x' \mid x,a) V^*(x')$

Key idea: Estimate Q(x,a) directly from samples!

Q-learning

- Estimate Q(x,a) = = $r(x,a) + \gamma \sum_{x'} P(x' | x,a) V^*(x')$
- Note that $V^*(x) = \max_a Q(x,a)$
- Suppose we
 - Have initial estimate of $Q_0(x,a)$
 - observe transition x, a, x' with reward r

Q-learning

Infead:
$$Q_{t}(x_{i}a) = (1-\alpha_{t})Q_{t-i}(x_{i}a) + \alpha_{t}(r + n \max_{\alpha'} Q_{t-i}(x_{i}a'))$$

prev. estimate correction

Theorem: If learning rate α_t satisfies

$$\sum_{t} \alpha_{t} = \infty$$

$$\sum_{t} \alpha_{t}^{2} < \infty$$

$$\sum_{t} \alpha_{t}^{2} < \infty$$

$$\sum_{t} \alpha_{t}^{2} < \infty$$

and actions are chosen at random, then Q learning converges to optimal Q* with probability 1

How can we trade off exploration and exploitation?

Optimistic Q-learning

Similar to R_{max}:

Initialize
$$Q_0(x,a) = \prod_t (1-\alpha_t)^{-1}/(1-\gamma) R_{max}$$

Theorem: With prob. 1- δ , optimistic Q-learning obtains an ϵ -optimal policy after a number of time steps that is polynomial in |S|, |A|, $1/\epsilon$ and $1/\delta$

Properties of Q-learning

- Memory required: O((s(·(A))
- Computation time: In every Heration O(1A1)Of Eargner Q(x,a)

Challenges of RL

- Curse of dimensionality
 - MDP and RL polynomial in |A| and |S|
 - Structured domains (chess, multiagent planning, ...):
 |S|, |A| exponential in #agents, state variables, ...
 - → Learning / approximating value functions (regression)
 - → Approximate planning using factored representations

- Risk in exploration
 - Random exploration can be disastrous
 - → Learn from "safe" examples: Apprenticeship learning